Withaferin A-A Promising Phytochemical Compound with Multiple Results in Dermatological Diseases

Simona Bungau, Cosmin Mihai Vesa, Areha Abid, Tapan Behl, Delia Mirela Tit, Anamaria Lavinia Purza, Bianca Pasca, Laura Maghiar Todan, Laura Endres, Simona Bungau, Cosmin Mihai Vesa, Areha Abid, Tapan Behl, Delia Mirela Tit, Anamaria Lavinia Purza, Bianca Pasca, Laura Maghiar Todan, Laura Endres

Abstract

Withaferin A (WFA) was identified as the most active phytocompound of the plant Withania somnifera (WS) and as having multiple therapeutic/ameliorating properties (anticancer, antiangiogenic, anti-invasive, anti-inflammatory, proapoptotic, etc.) in case of various diseases. In drug chemistry, WFA in silico approaches have identified favorite biological targets, stimulating and accelerating research to evaluate its pharmacological activity-numerous anticancer effects manifested in various organs (breast, pancreas, skin, colon, etc.), antivirals, anti-infective, etc., which are not yet sufficiently explored. This paper is a synthesis of the most relevant specialized papers in the field that are focused on the use of WFA in dermatological diseases, describing its mechanism of action while providing, at the same time, details about the results of its testing in in vitro/in vivo studies.

Keywords: Ayurvedic medicine; Withania somnifera; dermatological disorders; dermatology; melanoma; withaferin A.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
WFA chemical structure.
Figure 2
Figure 2
Flow chart describing the selection process of the References included in the study.
Figure 3
Figure 3
The reaction describing MTT procedure (metabolism of MTT to a formazan salt).

References

    1. Sehgal V. Diagnosis and Treatment of Common Skin Diseases. 5th ed. Jaypee Brothers Medical Publishers Pvt Ltd.; Guwahati, India: 2016.
    1. Behl T., Sharma A., Sharma L., Sehgal A., Zengin G., Brata R., Fratila O., Bungau S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines. 2020;8:571. doi: 10.3390/biomedicines8120571.
    1. Sivasankarapillai V.S., Madhu Kumar Nair R., Rahdar A., Bungau S., Zaha D.C., Aleya L., Tit D.M. Overview of the anticancer activity of Withaferin A, an active constituent of the Indian Ginseng Withania somnifera. Environ. Sci. Pollut. Res. 2020 doi: 10.1007/s11356-020-09028-0.
    1. Bungau S.G., Popa V.-C. Between Religion and Science Some Aspects Concerning Illness and Healing in Antiquity. Transylv. Rev. 2015;24:3–18.
    1. Kaur K., Singh P., Kaur K., Bhandawat B., Nogia P., Pati P.K. Development of robust in vitro culture protocol for the propagation of genetically and phytochemically stable plants of Withania somnifera (L.) Dunal (Ashwagandha) Ind. Crops Prod. 2021;166:113428. doi: 10.1016/j.indcrop.2021.113428.
    1. Samadi A.K. Potential Anticancer Properties and Mechanisms of Action of Withanolides. Enzymes. 2015;37:73–94. doi: 10.1016/bs.enz.2015.05.002.
    1. Dutta R., Khalil R., Green R., Mohapatra S.S., Mohapatra S. Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. Int. J. Mol. Sci. 2019;20:5310. doi: 10.3390/ijms20215310.
    1. Vanden Berghe W., Sabbe L., Kaileh M., Haegeman G., Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem. Pharmacol. 2012;84:1282–1291. doi: 10.1016/j.bcp.2012.08.027.
    1. Vyas A.R., Singh S.V. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS J. 2014;16:1–10. doi: 10.1208/s12248-013-9531-1.
    1. Yu Y., Hamza A., Zhang T., Gu M., Zou P., Newman B., Li Y., Gunatilaka A.A., Zhan C.G., Sun D. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem. Pharmacol. 2010;79:542–551. doi: 10.1016/j.bcp.2009.09.017.
    1. Srinivasan S., Ranga R.S., Burikhanov R., Han S.S., Chendil D. Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res. 2007;67:246–253. doi: 10.1158/0008-5472.CAN-06-2430.
    1. Maitra R., Porter M.A., Huang S., Gilmour P. Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation. J. Inflamm. 2009;6:15. doi: 10.1186/1476-9255-6-15.
    1. Stan S.D., Hahm E.R., Warin R., Singh S.V. Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res. 2008;68:7661–7669. doi: 10.1158/0008-5472.CAN-08-1510.
    1. Mayola E., Gallerne C., Esposti D.D., Martel C., Pervaiz S., Larue L., Debuire B., Lemoine A., Brenner C., Lemaire C. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis. 2011;16:1014–1027. doi: 10.1007/s10495-011-0625-x.
    1. Mandal C., Dutta A., Mallick A., Chandra S., Misra L., Sangwan R.S., Mandal C. Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis. 2008;13:1450–1464. doi: 10.1007/s10495-008-0271-0.
    1. Lee I.C., Choi B.Y. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action. Int. J. Mol. Sci. 2016;17:290. doi: 10.3390/ijms17030290.
    1. Dom M., Offner F., Vanden Berghe W., Van Ostade X. Proteomic characterization of Withaferin A-targeted protein networks for the treatment of monoclonal myeloma gammopathies. J. Proteom. 2018;179:17–29. doi: 10.1016/j.jprot.2018.02.013.
    1. Narayan M., Seeley K.W., Jinwal U.K. Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach. J. Ethnopharmacol. 2015;175:86–92. doi: 10.1016/j.jep.2015.09.024.
    1. Narayan M., Zhang J., Braswell K., Gibson C., Zitnyar A., Lee D.C., Varghese-Gupta S., Jinwal U.K. Withaferin A Regulates LRRK2 Levels by Interfering with the Hsp90- Cdc37 Chaperone Complex. Curr. Aging Sci. 2015;8:259–265. doi: 10.2174/1874609808666150520111109.
    1. Zhang L., Nemzow L., Chen H., Lubin A., Rong X., Sun Z., Harris T.K., Gong F. The deubiquitinating enzyme USP24 is a regulator of the UV damage response. Cell Rep. 2015;10:140–147. doi: 10.1016/j.celrep.2014.12.024.
    1. Ferlay J., Colombet M., Soerjomataram I., Dyba T., Randi G., Bettio M., Gavin A., Visser O., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005.
    1. Rotaru M., Jitian C.R., Iancu G.M. A 10-year retrospective study of melanoma stage at diagnosis in the academic emergency hospital of Sibiu county. Oncol. Lett. 2019;17:4145–4148. doi: 10.3892/ol.2019.10098.
    1. Carlino M.S., Long G.V. Ipilimumab Combined with Nivolumab: A Standard of Care for the Treatment of Advanced Melanoma? Clin. Cancer Res. 2016;22:3992. doi: 10.1158/1078-0432.CCR-15-2944.
    1. Long G.V., Flaherty K.T., Stroyakovskiy D., Gogas H., Levchenko E., de Braud F., Larkin J., Garbe C., Jouary T., Hauschild A., et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 2017;28:1631–1639. doi: 10.1093/annonc/mdx176.
    1. Marshall G.M., Bell J.L., Koach J., Tan O., Kim P., Malyukova A., Thomas W., Sekyere E.O., Liu T., Cunningham A.M., et al. TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. Oncogene. 2010;29:6172–6183. doi: 10.1038/onc.2010.340.
    1. Li W.J., Zhao Y.F. Withaferin A suppresses tumor promoter 12-O-tetradecanoylphorbol 13-acetate-induced decreases in isocitrate dehydrogenase 1 activity and mitochondrial function in skin epidermal JB6 cells. Cancer Sci. 2013;104:143–148. doi: 10.1111/cas.12051.
    1. Devi P.U., Kamath R., Rao B.S. Radiosensitization of a mouse melanoma by withaferin A: In vivo studies. Indian J. Exp. Biol. 2000;38:432–437.
    1. Samadi A.K., Cohen S.M., Mukerji R., Chaguturu V., Zhang X., Timmermann B.N., Cohen M.S., Person E.A. Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumor Biol. 2012;33:1179–1189. doi: 10.1007/s13277-012-0363-x.
    1. Prakash J., Gupta S.K., Dinda A.K. Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in Swiss albino mice. Nutr. Cancer. 2002;42:91–97. doi: 10.1207/S15327914NC421_12.
    1. Davis L., Kuttan G. Effect of Withania somnifera on DMBA induced carcinogenesis. J. Ethnopharmacol. 2001;75:165–168. doi: 10.1016/S0378-8741(00)00404-9.
    1. Xu C., Huang M.T., Shen G., Yuan X., Lin W., Khor T.O., Conney A.H., Kong A.N. Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006;66:8293–8296. doi: 10.1158/0008-5472.CAN-06-0300.
    1. Li W., Zhang C., Du H., Huang V., Sun B., Harris J.P., Richardson Q., Shen X., Jin R., Li G., et al. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model. Mol. Carcinog. 2016;55:1739–1746. doi: 10.1002/mc.22423.
    1. Vistica D.T., Skehan P., Scudiero D., Monks A., Pittman A., Boyd M.R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res. 1991;51:2515–2520.
    1. Halder B., Singh S., Thakur S.S. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells. PLoS ONE. 2015;10:e0137498. doi: 10.1371/journal.pone.0137498.
    1. Malik A., Sultana M., Qazi A., Qazi M.H., Parveen G., Waquar S., Ashraf A.B., Rasool M. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update. Anal. Cell. Pathol. 2016;2016:6146595. doi: 10.1155/2016/6146595.
    1. Kalthur G., Pathirissery U.D. Enhancement of the response of B16F1 melanoma to fractionated radiotherapy and prolongation of survival by withaferin A and/or hyperthermia. Integr. Cancer Ther. 2010;9:370–377. doi: 10.1177/1534735410378664.
    1. Mathur S., Kaur P., Sharma M., Katyal A., Singh B., Tiwari M., Chandra R. The treatment of skin carcinoma, induced by UV B radiation, using 1-oxo-5beta, 6beta-epoxy-witha-2-enolide, isolated from the roots of Withania somnifera, in a rat model. Phytomedicine. 2004;11:452–460. doi: 10.1016/j.phymed.2003.05.004.
    1. Zhang H., Samadi A.K., Cohen M.S., Timmermann B.N. Anti-proliferative withanolides from the Solanaceae: A structure-activity study. Pure Appl. Chem. 2012;84:1353–1367. doi: 10.1351/PAC-CON-11-10-08.
    1. Uma Devi P., Kamath R. Radiosensitizing effect of withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J. Radiat. Res. 2003;44:1–6. doi: 10.1269/jrr.44.1.
    1. Samadi A.K., Tong X., Mukerji R., Zhang H., Timmermann B.N., Cohen M.S. Withaferin A, a cytotoxic steroid from Vassobia breviflora, induces apoptosis in human head and neck squamous cell carcinoma. J. Nat. Prod. 2010;73:1476–1481. doi: 10.1021/np100112p.
    1. Sutton S.K., Koach J., Tan O., Liu B., Carter D.R., Wilmott J.S., Yosufi B., Haydu L.E., Mann G.J., Thompson J.F., et al. TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells. Oncotarget. 2014;5:10127–10139. doi: 10.18632/oncotarget.2466.
    1. Thaiparambil J.T., Bender L., Ganesh T., Kline E., Patel P., Liu Y., Tighiouart M., Vertino P.M., Harvey R.D., Garcia A., et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int. J. Cancer. 2011;129:2744–2755. doi: 10.1002/ijc.25938.
    1. Careta M.F., Romiti R. Localized scleroderma: Clinical spectrum and therapeutic update. An. Bras. Dermatol. 2015;90:62–73. doi: 10.1590/abd1806-4841.20152890.
    1. Denton C.P., Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–1699. doi: 10.1016/S0140-6736(17)30933-9.
    1. Larouche J., Sheoran S., Maruyama K., Martino M.M. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv. Wound Care. 2018;7:209–231. doi: 10.1089/wound.2017.0761.
    1. Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J. Dermatol. 2010;37:11–25. doi: 10.1111/j.1346-8138.2009.00738.x.
    1. Bale S., Pulivendala G., Godugu C. Withaferin A attenuates bleomycin-induced scleroderma by targeting FoxO3a and NF-κβ signaling: Connecting fibrosis and inflammation. Biofactors. 2018;44:507–517. doi: 10.1002/biof.1446.
    1. Halder R.M., Nootheti P.K. Ethnic skin disorders overview. J. Am. Acad. Dermatol. 2003;48:S143–S148. doi: 10.1067/mjd.2003.274.
    1. Sivamani R., Clark A. Phytochemicals in the treatment of hyperpigmentation. Bot. Targets Ther. 2016;6:89–96. doi: 10.2147/BTAT.S69113.
    1. Rendon M.I., Berson D.S., Cohen J.L., Roberts W.E., Starker I., Wang B. Evidence and considerations in the application of chemical peels in skin disorders and aesthetic resurfacing. J. Clin. Aesthet. Dermatol. 2010;3:32–43.
    1. Plensdorf S., Livieratos M., Dada N. Pigmentation Disorders: Diagnosis and Management. Am. Fam. Physician. 2017;96:797–804.
    1. Whitton M.E., Ashcroft D.M., Barrett C.W., Gonzalez U. Interventions for vitiligo. Cochrane Database Syst. Rev. 2006;1:CD003263.
    1. Matsuzawa A., Ichijo H. Redox control of cell fate by MAP kinase: Physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim. Biophys. Acta. 2008;1780:1325–1336. doi: 10.1016/j.bbagen.2007.12.011.
    1. Nakajima H., Wakabayashi Y., Wakamatsu K., Imokawa G. An extract of Withania somnifera attenuates endothelin-1-stimulated pigmentation in human epidermal equivalents through the interruption of PKC activity within melanocytes. Phytother. Res. 2011;25:1398–1411. doi: 10.1002/ptr.3552.
    1. Ali S.A., Meitei K.V. On the action and mechanism of withaferin-A from Withania somnifera, a novel and potent melanin dispersing agent in frog melanophores. J. Recept. Signal Transduct. Res. 2011;31:359–366. doi: 10.3109/10799893.2011.602414.
    1. Ramdass P., Mullick S., Farber H.F. Viral Skin Diseases. Prim. Care. 2015;42:517–567. doi: 10.1016/j.pop.2015.08.006.
    1. Meeting A.W. Prevention and control of herpesvirus diseases. Part 1. Clinical and laboratory diagnosis and chemotherapy. A WHO meeting. Bull. World Health Organ. 1985;63:185–201.
    1. Whitley R.J., David W.K., Roizman B. Herpes Simplex Viruses. Clin. Infect. Dis. 1998;26:541–553. doi: 10.1086/514600.
    1. Wild K., Bohner T., Folkers G., Schulz G.E. The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci. 1997;6:2097–2106. doi: 10.1002/pro.5560061005.
    1. Grover A., Agrawal V., Shandilya A., Bisaria V.S., Sundar D. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: Mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. BMC Bioinform. 2011;12:S22. doi: 10.1186/1471-2105-12-S13-S22.
    1. Rotaru M., Iancu G., Mihalache M., Anton G., Morariu S.-H. α-HPV positivity analysis in a group of patients with melanoma and non-melanoma skin cancers / Analiza pozitivităţii α-HPV la un grup de pacienţi cu tumori cutanate melanocitare şi non-melanocitare. Rom. Rev. Lab. Med. 2014;22 doi: 10.2478/rrlm-2014-0044.
    1. Cubie H.A. Diseases associated with human papillomavirus infection. Virology. 2013;445:21–34. doi: 10.1016/j.virol.2013.06.007.
    1. Padmavathi B., Rath P.C., Rao A.R., Singh R.P. Roots of Withania somnifera Inhibit Forestomach and Skin Carcinogenesis in Mice. Evid. Based Complement Alternat. Med. 2005;2:99–105. doi: 10.1093/ecam/neh064.
    1. Saleem S., Muhammad G., Hussain M.A., Altaf M., Bukhari S.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran J. Basic Med. Sci. 2020;23:1501–1526. doi: 10.22038/IJBMS.2020.44254.10378.
    1. Mirjalili. M.H., Moyano E., Bonfill M., Cusido R.M., Palazón J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules. 2009;14:2373–2393. doi: 10.3390/molecules14072373.
    1. Withania Somnifera Root Extract. [(accessed on 9 April 2021)]; Available online: .
    1. Mishra L.C., Singh B.B., Dagenais S. Scientific Basis for the Therapeutic Use of Withania somnifera(Ashwagandha): A Review. Altern. Med. Rev. 2000;5:33–38.
    1. Chen Z., Bozec A., Ramming A., Schett G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019;15:9–17. doi: 10.1038/s41584-018-0109-2.
    1. Cicchese J.M., Evans S., Hult C., Joslyn L.R., Wessler T., Millar J.A., Marino S., Cilfone N.A., Mattila J.T., Linderman J.J., et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol. Rev. 2018;285:147–167. doi: 10.1111/imr.12671.
    1. Keane M.P., Strieter R.M. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease. Respir. Res. 2002;3:5. doi: 10.1186/rr177.
    1. Singh N., Bhalla M., de Jager P., Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med. 2011;8:208–213. doi: 10.4314/ajtcam.v8i5S.9.
    1. Imokawa G., Ishida K. Inhibitors of Intracellular Signaling Pathways that Lead to Stimulated Epidermal Pigmentation: Perspective of Anti-Pigmenting Agents. Int. J. Mol. Sci. 2014;15:8293. doi: 10.3390/ijms15058293.
    1. Balkrishna A., Nain P., Chauhan A., Sharma N., Gupta A., Ranjan R., Varshney A. Super Critical Fluid Extracted Fatty Acids from Withania somnifera Seeds Repair Psoriasis-Like Skin Lesions and Attenuate Pro-Inflammatory Cytokines (TNF-α and IL-6) Release. Biomolecules. 2020;10:185. doi: 10.3390/biom10020185.
    1. Kuchewar V.V., Borkar M.A., Nisargandha M.A. Evaluation of antioxidant potential of Rasayana drugs in healthy human volunteers. Ayu. 2014;35:46–49. doi: 10.4103/0974-8520.141919.

Source: PubMed

3
Abonnere