Dose-dependent effect of human milk on Bronchopulmonary dysplasia in very low birth weight infants

Yan Xu, Zhangbin Yu, Qianqian Li, Jinjun Zhou, Xiaoguang Yin, Yuelan Ma, Yujie Yin, Shanyu Jiang, Rongping Zhu, Yue Wu, Liangrong Han, Yan Gao, Mei Xue, Yu Qiao, Lingling Zhu, Wenjuan Tu, Mingfu Wu, Jun Wan, Weiyuan Wang, Xiaoyi Deng, Shuangshuang Li, Sannan Wang, Xiaoqing Chen, Qin Zhou, Jinxiu Wang, Rui Cheng, Jun Wang, Shuping Han, Yan Xu, Zhangbin Yu, Qianqian Li, Jinjun Zhou, Xiaoguang Yin, Yuelan Ma, Yujie Yin, Shanyu Jiang, Rongping Zhu, Yue Wu, Liangrong Han, Yan Gao, Mei Xue, Yu Qiao, Lingling Zhu, Wenjuan Tu, Mingfu Wu, Jun Wan, Weiyuan Wang, Xiaoyi Deng, Shuangshuang Li, Sannan Wang, Xiaoqing Chen, Qin Zhou, Jinxiu Wang, Rui Cheng, Jun Wang, Shuping Han

Abstract

Background and aim: Human milk has potential protective effects against bronchopulmonary dysplasia (BPD). However, studies on the association between the dose of human milk and BPD in China are limited. This study aimed to evaluate the dose-dependent effects of human milk on BPD and other neonatal morbidities in very low birth weight (VLBW) infants.

Methods: This retrospective cohort study of preterm infants was conducted on preterm infants of gestational age ≤ 34 weeks and birth weight < 1500 g admitted to the multicenter clinical research database for breastfeeding quality improvement in Jiangsu province. The multivariate analysis was performed to compare the effect outcomes of daily graded doses [1-24 mL/(kg · day), 25-49 mL/(kg · day), and ≥ 50 mL/(kg · day) of body weight] of human milk on neonatal outcomes throughout the first 4 weeks of life versus a reference group receiving no human milk. The models were adjusted for potential confounding variables.

Results: Of 964 included infants, 279 (28.9%) received exclusive preterm formula, 128 (13.3%) received 1-24 ml/(kg · day), 139 (14.4%) received 25-49 ml/(kg · day), and 418 (43.4%) received ≥50 ml/(kg · day) human milk for the first 4 weeks of life. Compared with infants receiving exclusive formula, those receiving the highest volume of human milk daily [≥50 mL/(kg · day)] had lower incidences of BPD [27.5% in ≥50 mL/(kg · day) vs 40.1% in 0 mL/(kg · day) human milk, P = 0.001)], moderate and severe BPD [8.9% in ≥50 mL/(kg · day) vs 16.1% in 0 mL/(kg · day), P = 0.004], necrotizing enterocolitis [NEC; 3.8% in ≥50 mL/(kg · day) vs 10.8% in 0 mL/(kg · day), P = 0.001], late-onset sepsis [LOS; 9.3% in ≥50 mL/(kg · day) vs 19.7% in 0 mL/(kg · day), P <0.01], and extrauterine growth retardation [EUGR; 38.5% in ≥50 mL/(kg · day) vs 57.6% in 0 mL/(kg · day), P <0.01)]. The logistic regression indicated that those receiving ≥50 ml/kg · day human milk had lower odds of BPD [adjusted odds ratio (AOR) 0.453; 95% confidence interval (CI): 0.309, 0.666], moderate and severe BPD (AOR 0.430; 95% CI: 0.249, 0.742), NEC (AOR 0.314; 95% CI: 0.162, 0. 607), LOS (AOR 0.420; 95% CI: 0.263, 0.673), and EUGR (AOR 0.685; 95% CI: 0.479, 0.979).

Conclusions: A daily threshold amount of ≥50 ml/(kg · day) human milk in the first 4 weeks of life was associated with lower incidence of BPD as well as NEC, LOS, and EUGR in VLBW infants.

Trial registration: ClinicalTrials.gov Identifier: NCT03453502 . Registration date: March 5, 2018. This study was retrospectively registered.

Keywords: Bronchopulmonary dysplasia; Complications; Human milk; Very low birth weight.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram of the selection of the study population. BW, Birth weight; GA, gestational age

References

    1. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sanchez PJ, Van Meurs KP, Wyckoff M, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. Jama. 2015;314(10):1039–1051. doi: 10.1001/jama.2015.10244.
    1. Hilgendorff A, O'Reilly MA. Bronchopulmonary dysplasia early changes leading to long-term consequences. Front Med (Lausanne) 2015;2:2.
    1. Twilhaar ES, Wade RM, de Kieviet JF, van Goudoever JB, van Elburg RM, Oosterlaan J. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression. JAMA Pediatr. 2018;172(4):361–367. doi: 10.1001/jamapediatrics.2017.5323.
    1. Jobe AH. The new bronchopulmonary dysplasia. Curr Opin Pediatr. 2011;23(2):167–172. doi: 10.1097/MOP.0b013e3283423e6b.
    1. Jobe AH. Mechanisms of lung injury and Bronchopulmonary dysplasia. Am J Perinatol. 2016;33(11):1076–1078. doi: 10.1055/s-0036-1586107.
    1. Principi N, Di Pietro GM, Esposito S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J Transl Med. 2018;16(1):36. doi: 10.1186/s12967-018-1417-7.
    1. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015;91(11):629–635. doi: 10.1016/j.earlhumdev.2015.08.013.
    1. units Jmcgfbfinic Breast milk feeding in very low birth weight infants and extremely low birth weight infants in Jiangsu Province. Chin J Neonatol. 2018;3(33):165–169.
    1. Society SGoEdoCMAEgangoCP Score method for neonatal critical cases (draft) Zhonghua Er Ke Za Zhi. 2001;1(39):1.
    1. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, Wrage LA, Poole K. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116(6):1353–1360. doi: 10.1542/peds.2005-0249.
    1. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, Brotherton T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187(1):1–7. doi: 10.1097/00000658-197801000-00001.
    1. Huang J, Zhang L, Tang J, Shi J, Qu Y, Xiong T, Mu D. Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2019;104(2):F128–f136. doi: 10.1136/archdischild-2017-314205.
    1. Hair A. Own mother's milk significantly decreases the risk of bronchopulmonary dysplasia. Evid Based Nurs. 2018;21(1):16. doi: 10.1136/eb-2017-102781.
    1. Villamor-Martínez E, Pierro M, Cavallaro G, Mosca F, Kramer BW, Villamor E. Donor human milk protects against bronchopulmonary dysplasia: a systematic review and meta-analysis. Nutrients. 2018;10(2):238.
    1. Villamor-Martinez E, Pierro M, Cavallaro G, Mosca F, Villamor E. Mother's own Milk and Bronchopulmonary dysplasia: a systematic review and meta-analysis. Front Pediatr. 2019;7:224. doi: 10.3389/fped.2019.00224.
    1. Furman L, Taylor G, Minich N, Hack M. The effect of maternal milk on neonatal morbidity of very low-birth-weight infants. Arch Pediatr Adolesc Med. 2003;157(1):66–71. doi: 10.1001/archpedi.157.1.66.
    1. Maayan-Metzger A, Avivi S, Schushan-Eisen I, Kuint J. Human milk versus formula feeding among preterm infants: short-term outcomes. Am J Perinatol. 2012;29(2):121–126. doi: 10.1055/s-0031-1295652.
    1. Wang DH. Multicenter study of the nutritional status of premature infants in neonatal intensive care unit in China: report of 974 cases. Zhonghua Er Ke Za Zhi. 2009;47(1):12–17.
    1. Miller J, Tonkin E, Damarell RA, McPhee AJ, Suganuma M, Suganuma H, Middleton PF, Makrides M, Collins CT. A Systematic Review and Meta-Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients. 2018;10(6):707.
    1. Premkumar MH, Pammi M, Suresh G. Human milk-derived fortifier versus bovine milk-derived fortifier for prevention of mortality and morbidity in preterm neonates. Cochrane Database Syst Rev. 2019;2019(11):CD013145.
    1. Patel AL, Johnson TJ, Robin B, Bigger HR, Buchanan A, Christian E, Nandhan V, Shroff A, Schoeny M, Engstrom JL, et al. Influence of own mother's milk on bronchopulmonary dysplasia and costs. Arch Dis Child Fetal Neonatal Ed. 2017;102(3):F256–F261. doi: 10.1136/archdischild-2016-310898.
    1. Fonseca LT, Senna DC, Silveira RC, Procianoy RS. Association between breast Milk and Bronchopulmonary dysplasia: a single center observational study. Am J Perinatol. 2017;34(3):264–269. doi: 10.1055/s-0036-1586503.
    1. Schanler RJ, Shulman RJ, Lau C. Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics. 1999;103(6 Pt 1):1150–1157. doi: 10.1542/peds.103.6.1150.
    1. Yzydorczyk C, Mitanchez D, Buffat C, Ligi I, Grandvuillemin I, Boubred F. Simeoni U: [oxidative stress after preterm birth: origins, biomarkers, and possible therapeutic approaches] Arch Pediatr. 2015;22(10):1047–1055. doi: 10.1016/j.arcped.2015.05.019.
    1. Lee JW, Davis JM. Future applications of antioxidants in premature infants. Curr Opin Pediatr. 2011;23(2):161–166. doi: 10.1097/MOP.0b013e3283423e51.
    1. Ozsurekci Y, Aykac K. Oxidative stress related diseases in newborns. Oxidative Med Cell Longev. 2016;2016:2768365. doi: 10.1155/2016/2768365.
    1. Perrone S, Santacroce A, Longini M, Proietti F, Bazzini F, Buonocore G. The free radical diseases of prematurity: from cellular mechanisms to bedside. Oxidative Med Cell Longev. 2018;2018:7483062. doi: 10.1155/2018/7483062.
    1. Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol. 2003;8(1):39–49. doi: 10.1016/S1084-2756(02)00194-X.
    1. Sanchez-Illana A, Parra-Llorca A, Escuder-Vieco D, Pallas-Alonso CR, Cernada M, Gormaz M, Vento M, Kuligowski J. Biomarkers of oxidative stress derived damage to proteins and DNA in human breast milk. Anal Chim Acta. 2018;1016:78–85. doi: 10.1016/j.aca.2018.01.054.
    1. Aceti A, Beghetti I, Martini S, Faldella G, Corvaglia L. Oxidative stress and necrotizing Enterocolitis: Pathogenetic mechanisms, opportunities for intervention, and role of human Milk. Oxidative Med Cell Longev. 2018;2018:7397659. doi: 10.1155/2018/7397659.
    1. Mahajan S, Chawla D, Kaur J, Jain S. Macronutrients in Breastmilk of mothers of preterm infants. Indian Pediatr. 2017;54(8):635–637. doi: 10.1007/s13312-017-1124-0.
    1. Hascoët JM, Chauvin M, Pierret C, Skweres S, Egroo LV, Rougé C, Franck P. Impact of maternal nutrition and perinatal factors on breast milk composition after premature delivery. Nutrients. 2019;11(2):366.
    1. Moles L, Manzano S, Fernandez L, Montilla A, Corzo N, Ares S, Rodriguez JM, Espinosa-Martos I. Bacteriological, biochemical, and immunological properties of colostrum and mature milk from mothers of extremely preterm infants. J Pediatr Gastroenterol Nutr. 2015;60(1):120–126. doi: 10.1097/MPG.0000000000000560.
    1. Friel JK, Martin SM, Langdon M, Herzberg GR, Buettner GR. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr Res. 2002;51(5):612–618. doi: 10.1203/00006450-200205000-00012.
    1. Sun H, Cao Y, Han S, Cheng R, Liu L, Liu J, Xia S, Zhang J, Li Z, Cheng X, et al. A randomized controlled trial protocol comparing the feeds of fresh versus frozen mother's own milk for preterm infants in the NICU. Trials. 2020;21(1):170. doi: 10.1186/s13063-019-3981-4.
    1. Bertino E, Peila C, Cresi F, Maggiora E, Sottemano S, Gazzolo D, Arslanoglu S, Coscia A. Donor human Milk: effects of storage and heat treatment on oxidative stress markers. Front Pediatr. 2018;6:253. doi: 10.3389/fped.2018.00253.

Source: PubMed

3
Abonnere