Atrial Tissue Pro-Fibrotic M2 Macrophage Marker CD163+, Gene Expression of Procollagen and B-Type Natriuretic Peptide

Chris J Watson, Nadezhda Glezeva, Stephen Horgan, Joe Gallagher, Dermot Phelan, Ken McDonald, Michael Tolan, John Baugh, Patrick Collier, Mark Ledwidge, Chris J Watson, Nadezhda Glezeva, Stephen Horgan, Joe Gallagher, Dermot Phelan, Ken McDonald, Michael Tolan, John Baugh, Patrick Collier, Mark Ledwidge

Abstract

Background Atrial tissue fibrosis is linked to inflammatory cells, yet is incompletely understood. A growing body of literature associates peripheral blood levels of the antifibrotic hormone BNP (B-type natriuretic peptide) with atrial fibrillation (AF). We investigated the relationship between pro-fibrotic tissue M2 macrophage marker Cluster of Differentiation (CD)163+, atrial procollagen expression, and BNP gene expression in patients with and without AF. Methods and Results In a cross-sectional study design, right atrial tissue was procured from 37 consecutive, consenting, stable patients without heart failure or left ventricular systolic dysfunction, of whom 10 had AF and 27 were non-AF controls. Samples were analyzed for BNP and fibro-inflammatory gene expression, as well as fibrosis and CD163+. Primary analyses showed strong correlations (all P<0.008) between M2 macrophage CD163+ staining, procollagen gene expression, and myocardial BNP gene expression across the entire cohort. In secondary analyses without multiplicity adjustments, AF patients had greater left atrial volume index, more valve disease, higher serum BNP, and altered collagen turnover markers versus controls (all P<0.05). AF patients also showed higher atrial tissue M2 macrophage CD163+, collagen volume fraction, gene expression of procollagen 1 and 3, as well as reduced expression of the BNP clearance receptor NPRC (all P<0.05). Atrial procollagen 3 gene expression was correlated with fibrosis and BNP gene expression was correlated with serum BNP. Conclusions Elevated atrial tissue pro-fibrotic M2 macrophage CD163+ is associated with increased myocardial gene expression of procollagen and anti-fibrotic BNP and is higher in patients with AF. More work on modulation of BNP signaling for treatment and prevention of AF may be warranted.

Keywords: atrial fibrillation; fibrosis; gene expression; macrophage; natriuretic peptide.

Figures

Figure 1
Figure 1
Correlations between cardiac atrial tissue staining of M2‐macrophage marker CD163 and gene expression of BNP (A) and Collagen 1 (B).Furthermore, BNP gene expression in the atrial tissue correlates positively with Collagen 1 (C) and Collagen 3 (D) gene expression. BNP indicates B‐type natriuretic peptide; CD163, Cluster of differentiation 163; Col1, Collagen 1; and Col3, Collagen 3.
Figure 2
Figure 2
Cardiac atrial tissue staining for CD163 positivity (A) and collagen volume fraction (CVF, picrosirius red) (B). Also shown is typical staining of CD163‐positive macrophages (C) and collagen accumulation (D, picrosirius red) in cardiac interstitial (black arrowheads) and perivascular (red arrowheads) regions. AF indicates atrial fibrillation; CD163, cluster of differentiation 163; and CVF, collagen volume fraction.
Figure 3
Figure 3
Cardiac atrial tissue gene expression of Collagen 1 (A), Collagen 3 (B), BNP (C), GC‐A (D), and NPRC (E) with significant differences observed between AF and Controls in all except BNP and GC‐A. Higher serum BNP levels were observed in patients with AF compared with Controls (F). Serum BNP data are not normally distributed and are presented as medians (line), interquartile ranges (box) and ranges (whiskers). AF indicates atrial fibrillation; BNP, B‐type natriuretic peptide; GG‐A, Guanyl‐cyclase‐A, also known as natriuretic peptide receptor A; and NPRC, natriuretic peptide receptor C.

References

    1. Rossi A, Enruquez‐Sarano M, Burnett JC, Lerman A, Abel MD, Seward JB. Natriuretic peptide levels in atrial fibrillation: a prospective hormonal and Doppler‐echocardiographic study. J Am Coll Cardiol. 2000;35:1256–1262.
    1. Ellinor PT, Low AF, Patton KK, Shea MA, Macrae CA. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J Am Coll Cardiol. 2005;45:82–86.
    1. Ledwidge M, Gallagher J, Conlon C, Tallon E, O'Connell E, Dawkins I, Watson C, O'Hanlon R, Bermingham M, Patle A, et al. Natriuretic peptide‐based screening and collaborative care for heart failure: the STOP‐HF randomized trial. JAMA. 2013;310:66–74.
    1. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wolf PA, Vasan R. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655–663.
    1. Patton KK, Ellinor PT, Heckbert SR, Christenson RH, DeFilippi C, Gottdiener JS, Kronmal RA. N‐terminal pro‐B‐type natriuretic peptide is a major predictor of the development of atrial fibrillation: the Cardiovascular Health Study. Circulation. 2009;120:1768–1774.
    1. Yamauchi T, Sakata Y, Miura M, Onose T, Tsuji K, Abe R, Oikawa T, Kasahara S, Sato M, Nochioka K, et al. Prognostic impact of atrial fibrillation and new risk score of its onset in patients at high risk of heart failure—a report from the CHART‐2 Study. Circ J. 2017;81:185–194.
    1. Kara K, Geisel MH, Möhlenkamp S, Lehmann N, Kälsch H, Bauer M, Neumann T, Dragano N, Moebus S, Jöckel KH, et al. B‐type natriuretic peptide for incident atrial fibrillation‐The Heinz Nixdorf Recall Study. J Cardiol. 2015;65:453–458.
    1. Svennberg E, Henriksson P, Engdahl J, Hijazi Z, Al‐Khalili F, Friberg L, Frykman V. N‐terminal pro B‐type natriuretic peptide in systematic screening for atrial fibrillation. Heart. 2017;103:1271–1277.
    1. Inohara T, Kim S, Pieper K, Blanco RG, Allen LA, Fonarow GC, Gersh BJ, Ezekowitz MD, Kowey PR, Reiffel JA, et al. B‐type natriuretic peptide, disease progression and clinical outcomes in atrial fibrillation. Heart. 2018;05:370–377.
    1. Burstein B, Comtois P, Michael G, Nishida K, Villeneuve L, Yeh YH, Nattel S. Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ Res. 2009;105:1213–1222.
    1. Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802–809.
    1. Yue L, Xie J, Nattel S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. 2011;89:744–753.
    1. De Jong AM, Maass AH, Oberdorf‐Maass SU, De Boer RA, Van Gilst WH, Van Gelder IC. Cyclical stretch induces structural changes in atrial myocytes. J Cell Mol Med. 2013;17:743–753.
    1. Watson CJ, Phelan D, Xu M, Collier P, Neary R, Smolenski A, Ledwidge M, McDonald K, Baugh J. Mechanical stretch up‐regulates the B‐type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor‐β mediated fibrosis. Fibrogenesis Tissue Repair. 2012;5:9, 1–10.
    1. Phelan D, Watson C, Martos R, Collier P, Patle A, Donnelly S, Ledwidge M, Baugh J, McDonald K. Modest elevation in BNP in asymptomatic hypertensive patients reflects sub‐clinical cardiac remodeling, inflammation and extracellular matrix changes. PLoS One. 2012;7:e49259.
    1. Chen MC, Chang JP, Liu WH, Yang CH, Chen YL, Tsai TH, Wang YH, Pan KL. Increased inflammatory cell infiltration in the atrial myocardium of patients with atrial fibrillation. Am J Cardiol. 2008;102:861–865.
    1. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12:230–243.
    1. Glezeva N, Collier P, Voon V, Ledwidge M, McDonald K, Watson C, Baugh J. Attenuation of monocyte chemotaxis‐a novel anti‐inflammatory mechanism of action for the cardio‐protective hormone B‐type natriuretic peptide. J Cardiovasc Transl Res. 2013;6:545–557.
    1. Ichiki T, Schirger JA, Huntley BK, Brozovich FV, Maleszewski JJ, Sandberg SM, Sangaralingham SJ, Park SJ, Burnett JC Jr. Cardiac fibrosis in end‐stage human heart failure and the cardiac natriuretic peptide guanylyl cyclase system: regulation and therapeutic implications. J Mol Cell Cardiol. 2014;75:199–205.
    1. Smorodinova N, Blaha M, Melenovsky V, Rozsivalova K, Pridal J, Durisova M, Pirk J, Kautzner J, Kučera T. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS One. 2017;12:e0172691.
    1. Shahid F, Lip GYH, Shantsila E. Role of monocytes in heart failure and atrial fibrillation. J Am Heart Assoc. 2018;7:e007849 DOI: 10.1161/JAHA.117.007849.
    1. Saenger A, Rodriguez‐Fraga O, Ler R, Ordonez‐Llanos J, Jaffe AS, Goetze JP, Apple FS. Specificity of B‐type natriuretic peptide assays: cross‐reactivity with different BNP, NT‐proBNP, and proBNP peptides. Clin Chem. 2017;63:351–358.
    1. Lam CSP, Burnett JRJC, Costello‐Boerrigter L, Rodeheffer RJ, Margaret M, Redfield MR. Alternate circulating Pro‐B‐type natriuretic peptide and B‐type natriuretic peptide forms in the general population. J Am Coll Cardiol. 2007;49:1193–1202.
    1. Springer J, Azer J, Hua R, Robbins C, Adamczyk A, McBoyle S, Bissell MB, Rose RA. The natriuretic peptides BNP and CNP increase heart rate and electrical conduction by stimulating ionic currents in the sinoatrial node and atrial myocardium following activation of guanylyl cyclase‐linked natriuretic peptide receptors. J Mol Cell Cardiol. 2012;52:1122–1134.
    1. Hodgson‐Zingman DM, Karst ML, Zingman LV, Heublein DM, Darbar D, Herron KJ, Ballew JD, de Andrade M, Burnett JC Jr, Olson TM. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008;359:158–165.
    1. Chiurchiu V, Izzi V, D'Aquilio F, Carotenuto F, Di Nardo P, Baldini PM. Brain natriuretic peptide (BNP) regulates the production of inflammatory mediators in human THP‐1 macrophages. Regul Pept. 2008;148:26–32.
    1. Jang AY, Yu J, Park YM, Shin MS, Chung WJ, Moon J. Cardiac structural or functional changes associated with CHA2DS2‐VASc scores in non‐valvular atrial fibrillation: a cross‐sectional study using echocardiography. J Cardiovasc Imaging. 2018;26:135–143.
    1. Patel JB, Valencik ML, Pritchett AM, Burnett JC Jr, McDonald JA, Redfield MM. Cardiac‐specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol. 2005;289:H777–H784.
    1. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA. 2000;97:4239–4244.
    1. Holtwick R, van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M. Pressure‐independent cardiac hypertrophy in mice with cardiomyocyte‐restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase‐A. J Clin Invest. 2003;111:1399–1407.
    1. Rahmutula D, Zhang H, Wilson EE, Olgin JE. Absence of NPR‐C attenuates TGF‐ß1 induced selective atrial fibrosis and atrial fibrillation. Cardiovasc Res. 2019;115:357–372.
    1. Jansen HJ, Mackasey M, Moghtadaei M, Liu Y, Kaur J, Egom EE, Tuomi JM, Rafferty SA, Kirkby AW, Rose RA. NPR‐C (natriuretic peptide receptor‐C) modulates the progression of angiotensin II‐mediated atrial fibrillation and atrial remodeling in mice. Circ Arrhythm Electrophysiol. 2019;12:e006863.
    1. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher‐Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double‐blind randomised controlled trial. Lancet. 2012;380:1387–1395.
    1. Januzzi JL Jr, Prescott MF, Butler J, Felker GM, Maisel AS, McCague K, Camacho A, Piña IL, Rocha RA, Shah AM, et al. Association of change in N‐terminal pro–B‐type natriuretic peptide following initiation of sacubitril‐valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA. 2019;322:1085–1095.

Source: PubMed

3
Abonnere