A meta-analysis of the resuscitative effects of mechanical and manual chest compression in out-of-hospital cardiac arrest patients

Ni Zhu, Qi Chen, Zhixia Jiang, Futuan Liao, Bujin Kou, Hui Tang, Manhong Zhou, Ni Zhu, Qi Chen, Zhixia Jiang, Futuan Liao, Bujin Kou, Hui Tang, Manhong Zhou

Abstract

Objectives: To evaluate the resuscitative effects of mechanical and manual chest compression in patients with out-of-hospital cardiac arrest (OHCA).

Methods: All randomized controlled and cohort studies comparing the effects of mechanical compression and manual compression on cardiopulmonary resuscitation in OHCA patients were retrieved from the Cochrane Library, PubMed, EMBASE, and Ovid databases from the date of their establishment to January 14, 2019. The included outcomes were as follows: the return of spontaneous circulation (ROSC) rate, the rate of survival to hospital admission, the rate of survival to hospital discharge, and neurological function. After evaluating the quality of the studies and summarizing the results, RevMan5.3 software was used for the meta-analysis.

Results: In total, 15 studies (9 randomized controlled trials and 6 cohort studies) were included. The results of the meta-analysis showed that there were no significant differences in the resuscitative effects of mechanical and manual chest compression in terms of the ROSC rate, the rate of survival to hospital admission and survival to hospital discharge, and neurological function in OHCA patients (ROSC: RCT: OR = 1.12, 95% CI (0.90, 1.39), P = 0.31; cohort study: OR = 1.08, 95% CI (0.85, 1.36), P = 0.54; survival to hospital admission: RCT: OR = 0.95, 95% CI (0.75, 1.20), P = 0.64; cohort study: OR = 0.98 95% CI (0.79, 1.20), P = 0.82; survival to hospital discharge: RCT: OR = 0.87, 95% CI (0.68, 1.10), P = 0.24; cohort study: OR = 0.78, 95% CI (0.53, 1.16), P = 0.22; Cerebral Performance Category (CPC) score: RCT: OR = 0.88, 95% CI (0.64, 1.20), P = 0.41; cohort study: OR = 0.68, 95% CI (0.34, 1.37), P = 0.28). When the mechanical compression group was divided into Lucas and Autopulse subgroups, the Lucas subgroup showed no difference from the manual compression group in ROSC, survival to admission, survival to discharge, and CPC scores; the Autopulse subgroup showed no difference from the manual compression subgroup in ROSC, survival to discharge, and CPC scores.

Conclusion: There were no significant differences in resuscitative effects between mechanical and manual chest compression in OHCA patients. To ensure the quality of CPR, we suggest that manual chest compression be applied in the early stage of CPR for OHCA patients, while mechanical compression can be used as part of advanced life support in the late stage.

Keywords: Manual chest compression; Mechanical chest compression; Meta-analysis; OHCA; Out-of-hospital cardiac arrest.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow diagram of the search criteria and the reasons for exclusion
Fig. 2
Fig. 2
Forest plot of the ROSC for RCTs
Fig. 3
Fig. 3
Forest plot of the ROSC for cohort studies
Fig. 4
Fig. 4
Forest plot of survival to admission for RCTs
Fig. 5
Fig. 5
Forest plot of survival to admission for cohort studies
Fig. 6
Fig. 6
Forest plot of survival to discharge for RCTs
Fig. 7
Fig. 7
Forest plot of survival to discharge for cohort studies
Fig. 8
Fig. 8
Forest plot of CPC scores for RCTs
Fig. 9
Fig. 9
Forest plot of CPC scores for cohort studies

References

    1. Idris AH, Guffey D, Pepe PP, et al. Chest compression rates and survival following out-of-hospital cardiac arrest. Crit Care Med. 2015;43(4):840–848. doi: 10.1097/CCM.0000000000000824.
    1. Stiell IG, Brown SP, Christenson J, et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med. 2012;40:1192–18.5. doi: 10.1097/CCM.0b013e31823bc8bb.
    1. Kouw Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: adult basic life support and cardiopulmonary resuscitation quality: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S414–435.64–1067. doi: 10.1161/CIR.0000000000000259.
    1. Hightower D, Thomas SH, Stone CK, Dunn K, March JA. Decay in quality of closed-chest compressions over time. Ann Emerg Med. 1995;26(3):300–303. doi: 10.1016/S0196-0644(95)70076-5.
    1. Lurie K. Mechanical devices for cardiopulmonary resuscitation: an update. Emerg Med Clin North Am. 2002;20(4):771–784. doi: 10.1016/S0733-8627(02)00027-5.
    1. Ikeno F, Kaneda H, Hongo Y, Sakanoue Y, Nolasco C, Emami S, et al. Augmentation of tissue perfusion by a novel compression device increases neurological intact survival in porcine model of prolonged cardiac arrest. Resuscitation. 2006;68:109–118. doi: 10.1016/j.resuscitation.2005.05.024.
    1. Halperin H, Paradis N, Ornato J. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol. 2004;44:2214–2220. doi: 10.1016/j.jacc.2004.08.061.
    1. Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care. 2005;9:61–67. doi: 10.1080/10903120590891714.
    1. Westfall M, Krantz S, Mullin C, Kaufman C. Mechanical versus manual chest compressions in out-of-hospital cardiac arrest: a meta-analysis. Crit Care Med. 2013;41(7):1782–1789. doi: 10.1097/CCM.0b013e31828a24e3.
    1. Ong ME, Mackey KE, Zhang ZC, Tanaka H, Ma MH, Swor R. Mechanical CPR devices compared to manual CPR during out-of-hospital cardiac arrest and ambulance transport: a systematic review. Scand J Trauma Resusc Emerg Med. 2012;20:39. doi: 10.1186/1757-7241-20-39.
    1. Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2014;2:CD007260.
    1. Li H, Wang D, Yu Y, Zhao X, Jing X. Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2016;24:10. doi: 10.1186/s13049-016-0202-y.
    1. Khan SU, Lone AN, Talluri S, Khan MZ, Khan MU, Kaluski E. Efficacy and safety of mechanical versus manual compression in cardiac arrest - A Bayesian network meta-analysis. Resuscitation. 2018;130:182–8.
    1. Higgins JPT, Altman DG, Sterne JAC (editors). Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration; 2011. Available from .
    1. Dickinson ET, Verdile VP, Schneider RM, Salluzzo RF. Effectiveness of mechanical versus manual chest compressions in out-of-hospital cardiac arrest resuscitation: a pilot study. Am J Emerg Med. 1998;16(3):289–292. doi: 10.1016/S0735-6757(98)90105-X.
    1. Hallstrom A, Rea TD, Sayre MR, Christenson J, Anton AR, Mosesso VN., Jr Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. J Am Med Assoc. 2006;H295(22):2620–2628.
    1. Smekal D, Johansson J, Huzevka T, Rubertsson S. A pilot study of mechanical chest compressions with the LUCASTM device in cardiopulmonary resuscitation. Resuscitation. 2011;82(6):702–706. doi: 10.1016/j.resuscitation.2011.01.032.
    1. Axelsson C, Nestin J, Svensson L, Axelsson AB, Herlitz J. Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-a pilot study. Resuscitation. 2006;71(1):47–55. doi: 10.1016/j.resuscitation.2006.02.011.
    1. Hock Ong ME, Fook-Chong S, Annathurai A, Ang SH, Tiah L, Yong KL. Improved neurologically intact survival with the use of an automated, load distributing band chest compression device for cardiac arrest presenting to the emergency department. Crit Care. 2012;16:R144. doi: 10.1186/cc11456.
    1. Zeiner S, Sulzgruber P, Datler P, Keferbock M, Poppe M, Lobmeyr E, van Tulder R, Zajicek A, Buchinger A, Polz K, Schrattenbacher G, Sterz F. Chest compression does not seem to improve outcome after out-of hospital cardiac arrest. A single center observational trial. Resuscitation. 2015;96:220–225. doi: 10.1016/j.resuscitation.2015.07.051.
    1. Rubertsson S, Lindgren E, Smekal D, Östlund O, Silfverstolpe J, Lichtveld RA, Boomars R, Ahlstedt B, Skoog G, Kastberg R, Halliwell D, Box M, Herlitz J, Karlsten R. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest. J Am Med Assoc. 2014;311(1):53–61. doi: 10.1001/jama.2013.282538.
    1. Perkins GD, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, Lamb SE, Slowther AM, Woollard M, Carson A, Smyth M, Whitfield R, Williams A, Pocock H, Black JJ, Wright J, Han K, Gates S. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet. 2015;385:947–955. doi: 10.1016/S0140-6736(14)61886-9.
    1. Gao C, Chen Y, Peng H, Chen Y, Zhuang Y, Zhou S. Clinical evaluation of the AutoPulse automated chest compression device for out-of-hospital cardiac arrest in the northern district of Shanghai, China. Arch Med Sci. 2016;12(3):563–570. doi: 10.5114/aoms.2016.59930.
    1. Wik L, Olsen JA, Persse D, Sterz F, Lozano M, Brouwer MA, Westfall M, Souders CM, Malzer R, Grunsven PM, Travis DT, Whitehead A, Herken UR, Lerner EB. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85:741–748. doi: 10.1016/j.resuscitation.2014.03.005.
    1. Anantharaman V, Ng BL, Ang SH, Lee CY, Leong SH, Ong ME, Chua SJ, Rabind AC, Anjali NB, Hao Y. Prompt use of mechanical cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the MECCA study report. Singap Med J. 2017;58:424–431. doi: 10.11622/smedj.2017071.
    1. Hardig B, Lindgren E, Östlund O, Herlitz J, Karlsten R, Rubertsson S. Outcome among VF/VT patients in the LINC (LUCAS IN cardiac arrest) trial-a randomised, controlled trial. Resuscitation. 2017;115:155–162. doi: 10.1016/j.resuscitation.2017.04.005.
    1. Ck L, et al. Effectiveness of mechanical chest compression for out-of-hospital cardiac arrest patients in an emergency department. Journal of the Chinese Medical Association. 2015;78(6):360–363. doi: 10.1016/j.jcma.2015.01.005.
    1. Buckler DG, Burke RV, Naim MY, et al. Association of mechanical cardiopulmonary resuscitation device use with cardiac arrest outcomes: a population-based study using the CARES Registry (Cardiac Arrest Registry to Enhance Survival) Circulation. 2016;134(25):2131–2133. doi: 10.1161/CIRCULATIONAHA.116.026053.
    1. Hayashida K, Tagami T, Fukuda T, et al. Mechanical Cardiopulmonary Resuscitation and Hospital Survival Among Adult Patients With Nontraumatic Out-of-Hospital Cardiac Arrest Attending the Emergency Department: A Prospective, Multicenter, Observational Study in Japan (SOS-KANTO [Survey of Survivors after Out-of-Hospital Cardiac Arrest in Kanto Area] 2012 Study). J Am Heart Assoc. 2017;31;6(11).
    1. Aufderheide TP. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation. 2005;64(3):353–362. doi: 10.1016/j.resuscitation.2004.10.007.

Source: PubMed

3
Abonnere