3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients

Daniel Cernica, Imre Benedek, Stefania Polexa, Cosmin Tolescu, Theodora Benedek, Daniel Cernica, Imre Benedek, Stefania Polexa, Cosmin Tolescu, Theodora Benedek

Abstract

The increasing complexity of cardiovascular interventions requires advanced peri-procedural imaging and tailored treatment. Three-dimensional printing technology represents one of the most significant advances in the field of cardiac imaging, interventional cardiology or cardiovascular surgery. Patient-specific models may provide substantial information on intervention planning in complex cardiovascular diseases, and volumetric medical imaging from CT or MRI can be translated into patient-specific 3D models using advanced post-processing applications. 3D printing and additive manufacturing have a great variety of clinical applications targeting anatomy, implants and devices, assisting optimal interventional treatment and post-interventional evaluation. Although the 3D printing technology still lacks scientific evidence, its benefits have been shown in structural heart diseases as well as for treatment of complex arrhythmias and corrective surgery interventions. Recent development has enabled transformation of conventional 3D printing into complex 3D functional living tissues contributing to regenerative medicine through engineered bionic materials such hydrogels, cell suspensions or matrix components. This review aims to present the most recent clinical applications of 3D printing in cardiovascular medicine, highlighting also the potential for future development of this revolutionary technology in the medical field.

Keywords: 3D printing; additive manufacturing; anatomic model; interventional cardiology; regenerative cardiology.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cardiac 3D printing workflow.
Figure 2
Figure 2
Types of 3D printer technology.
Figure 3
Figure 3
The main applications of 3D printing in cardiology.

References

    1. Farooqi K., Cooper C. 3D Printing and Heart Failure: The Present and the Future. JACC Heart Fail. 2019;7:132–142. doi: 10.1016/j.jchf.2018.09.011.
    1. Giannopoulos A.A. Cardiothoracic applications of 3-dimensional printing. J. Thorac. Imaging. 2016;31:253–272. doi: 10.1097/RTI.0000000000000217.
    1. Kim M.S., Hansgen A.R., Carroll J. Rapid prototyping: A new tool in understanding and treating structural heart disease. Circulation. 2008;117:2388–2394. doi: 10.1161/CIRCULATIONAHA.107.740977.
    1. Ryan J.R. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc. Imaging. 2015;8:103–104. doi: 10.1016/j.jcmg.2014.04.030.
    1. Schmauss D., Haeberle S. Three-dimensional printing in cardiac surgery and interventional cardiology: A single-centre experience. Eur. J. Cardiothorac. Surg. 2015;47:1044–1052. doi: 10.1093/ejcts/ezu310.
    1. Pellegrino P.L., Fassini G., Di Biase M. Left atrial appendage closure guided by 3D-printed cardiac reconstruction: Emerging directions and future trends. J. Cardiovasc. Electrophysiol. 2016;27:768–771. doi: 10.1111/jce.12960.
    1. Yang D.H. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation. 2015;132:300–301. doi: 10.1161/CIRCULATIONAHA.115.015842.
    1. Mashari A. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: A clinical application of three-dimensional printing. J. Cardiothorac. Vasc. Anesth. 2016;30:1278–1285. doi: 10.1053/j.jvca.2016.01.013.
    1. Sulkin M.S. Three-dimensional printing physiology laboratory technology. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H1569–H1573. doi: 10.1152/ajpheart.00599.2013.
    1. Biglino G. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: Feasibility and acceptability. BMJ Open. 2015;5:e007165. doi: 10.1136/bmjopen-2014-007165.
    1. Costello J. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit. Heart Dis. 2015;10:185–190. doi: 10.1111/chd.12238.
    1. Wurm G., Tomancok B. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. J. Neurosurg. 2004;100:139–145. doi: 10.3171/jns.2004.100.1.0139.
    1. Farooqi K.M., Nielsen J.C. Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning. Circ. Cardiovasc. Imaging. 2015;8:e003043. doi: 10.1161/CIRCIMAGING.114.003043.
    1. Melchels F.P., Domingos M.A. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 2012;37:1079–1104. doi: 10.1016/j.progpolymsci.2011.11.007.
    1. Parimi M., Buelter J. Feasibility and validity of printing 3d heart models from rotational angiography. Pediatr. Cardiol. 2018;39:653–658. doi: 10.1007/s00246-017-1799-y.
    1. Mitsouras D. Medical 3D printing for the radiologist. Radiographics. 2015;35:1965–1988. doi: 10.1148/rg.2015140320.
    1. Wang D.D., Gheewala N. Three-Dimensional Printing for Planning of Structural Heart Interventions. Interv. Cardiol. Clin. 2018;7:415–423. doi: 10.1016/j.iccl.2018.04.004.
    1. Wang K., Wu C. Dual-material 3D-printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit. Manuf. 2016;12:31–37. doi: 10.1016/j.addma.2016.06.006.
    1. Kim G.B. Three-dimensional printing: Basic principles and applications in medicine and radiology. Korean J. Radiol. 2016;17:182–197. doi: 10.3348/kjr.2016.17.2.182.
    1. Billiet T., Vandenhaute M. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020–6041. doi: 10.1016/j.biomaterials.2012.04.050.
    1. Wong K.V., Hernandez A. A review of additive manufacturing. ISRN Mech. Eng. 2012:1–10. doi: 10.5402/2012/208760.
    1. Castilho M.D., Malda J., Levato R. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication. 2018;10:034101.
    1. Carve M., Wlodkowic D. 3D-Printed Chips: Compatibility of Additive Manufacturing Photopolymeric Substrata with Biological Applications. Micromachines. 2018;9:91. doi: 10.3390/mi9020091.
    1. Yap C.Y. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015;2:041101. doi: 10.1063/1.4935926.
    1. Rahman Z., Barakh Ali S.F., Ozkan T., Charoo N.A., Reddy I.K., Khan M.A. Additive Manufacturing with 3D Printing: Progress from Bench to Bedside. AAPS J. 2018;20:101. doi: 10.1208/s12248-018-0225-6.
    1. Do A.V., Khorsand B. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 2015;4:1742–1762. doi: 10.1002/adhm.201500168.
    1. Boland T., Tao X., Damon B.J., Manley B., Kesari P., Jalota S., Bhaduri S. Drop-on-demand printing of cells and materials for designer tissue constructs. Mater. Sci. Eng. C. 2006;27:372–376. doi: 10.1016/j.msec.2006.05.047.
    1. Bohandy J., Kim B.F. Metal deposition from a supported metal !lm using an excimer laser. J. Appl. Phys. 1986;60:1538–1539. doi: 10.1063/1.337287.
    1. Malda J., Visser J., Melchels F.P., Jüngst T., Hennink W.E., Dhert W.J., Groll J., Hutmacher D.W. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 2013;25:5011–5028. doi: 10.1002/adma.201302042.
    1. Garcia J., Yang Z., Mongrain R., Leask R.L., Lachapelle K. 3D printing materials and their use in medical education: A review of current technology and trends for the future. BMJ Simul. Technol. Enhanc. Learn. 2018;4:27–40. doi: 10.1136/bmjstel-2017-000234.
    1. Chan H.H., Siewerdsen J.H., Vescan A. 3D rapid prototyping for otolaryngology-head and neck surgery: Applications in image-guidance, surgical simulation and patient-specific modeling. PLoS ONE. 2015;10:e0136370. doi: 10.1371/journal.pone.0136370.
    1. Ripley B., Kelil T., Cheezum M.K. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2016;10:28–36. doi: 10.1016/j.jcct.2015.12.004.
    1. Emmott A., Garcia J., Chung J. Biomechanics of the ascending thoracic aorta: A clinical perspective on engineering data. Can. J. Cardiol. 2016;32:35–47. doi: 10.1016/j.cjca.2015.10.015.
    1. Lewis J.A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 2006;16:2193–2204. doi: 10.1002/adfm.200600434.
    1. Bramlet M., Olivieri L., Farooqi K. Impact of three-dimensional printing on the study and treatment of congenital heart disease. Circ. Res. 2017;120:904–907. doi: 10.1161/CIRCRESAHA.116.310546.
    1. Ngoa T.D., Kashania A., Imbalzanoa G., Nguyena K.T.Q., Huib D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012.
    1. Tack P., Victor J. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online. 2016;15:115. doi: 10.1186/s12938-016-0236-4.
    1. Sun Z., Lau I., Wong Y.H., Yeong C.H. Personalized Three-Dimensional Printed Models in Congenital Heart Disease. J. Clin. Med. 2019;8:522. doi: 10.3390/jcm8040522.
    1. Batteux C. 3D-Printed Models for Surgical Planning in Complex Congenital Heart Diseases: A Systematic Review. Front. Pediatrics. 2019;7:23. doi: 10.3389/fped.2019.00023.
    1. Padalino M.A., Basso C. Surgically treated primary cardiac tumors in early infancy and childhood. J. Thorac. Cardiovasc. Surg. 2005;129:1358–1363. doi: 10.1016/j.jtcvs.2004.10.020.
    1. Schmauss D., Schmitz C. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann. Thorac. Surg. 2012;93:e31–e33. doi: 10.1016/j.athoracsur.2011.09.031.
    1. Sodian R., Weber S. Pediatriccardiac transplantation: Three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J. Thorac. Cardiovasc. Surg. 2008;136:1098–1099. doi: 10.1016/j.jtcvs.2008.03.055.
    1. Bateman M., William L. Cardiac patient–specific three-dimensional models as surgical planning tools. Surgery. 2020;167:259–263. doi: 10.1016/j.surg.2018.11.022.
    1. Meier L.M., Meineri M. Structural and congenital heart disease interventions: The role of three-dimensional printing. Neth. Heart J. 2017;25:e65–e75. doi: 10.1007/s12471-016-0942-3.
    1. Hazeveld A., Slater H.J.J.R., Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofac. Orthop. 2014;145:108–115. doi: 10.1016/j.ajodo.2013.05.011.
    1. Shiraishi I., Yamagishi M. Simulative operation on congenital heart disease using rubber- like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardiothorac. Surg. 2010;37:302–306. doi: 10.1016/j.ejcts.2009.07.046.
    1. Yoo S.J., Van Arsdell G.S. 3D printing in surgical management of double outlet right ventricle. Front. Pediatr. 2018;5:289. doi: 10.3389/fped.2017.00289.
    1. Motwani M., Burley O., Luckie M., Cunnington C., Pisaniello A.D., Hasan R., Malik I., Fraser D.G. 3D-printing assisted closure of paravalvular leak. J. Cardiovasc. Comput. Tomogr. 2020;14:e66–e68. doi: 10.1016/j.jcct.2019.03.008.
    1. Engelhardt S., Sauerzapf S., Preim B., Karck M., Wolf I., De Simone R. Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds. Int. J. Comput. Assist. Radiol. Surg. 2019;14:1177–1186. doi: 10.1007/s11548-019-01971-9.
    1. Zopf D.A., Flanagan C.L., Wheeler M., Hollister S.J., Green G.E. Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint. JAMA Otolaryngol. Head Neck Surg. 2014;140:66–71. doi: 10.1001/jamaoto.2013.5644.
    1. Fan Y., Yang F., Cheung G.S., Chan A.K., Wang D.D., Lam Y.Y., Chow M.C., Leong M.C., Kam K.K., So K.C., et al. Device Sizing Guided by Echocardiography-Based Three-Dimensional Printing Is Associated with Superior Outcome after Percutaneous Left Atrial Appendage Occlusion. J. Am. Soc. Echocardiogr. 2019;32:708–719.e1. doi: 10.1016/j.echo.2019.02.003.
    1. Lazkani M., Faran B. Postinfarct VSD management using 3D computer printing assisted percutaneous closure. Indian Heart J. 2015;67:581–585. doi: 10.1016/j.ihj.2015.09.021.
    1. Kim M.S., Hansgen A.R., Carroll J.D. Use of rapid prototyping in the care of patients with structural heart disease. Trends Cardiovasc. Med. 2008;18:210–216. doi: 10.1016/j.tcm.2008.11.001.
    1. Riesenkampff E., Rietdorf U. The practical clinical value of three-dimensional models of complex congenitally mal- formed hearts. J. Thorac. Cardiovasc. Surg. 2009;138:571–580. doi: 10.1016/j.jtcvs.2009.03.011.
    1. Olivieri L.J., Krieger A. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: Feasibility and relative accuracy. J. Am. Soc. Echocardiogr. 2015;28:392–397. doi: 10.1016/j.echo.2014.12.016.
    1. Valverde I., Gomez G. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol. Young. 2015;25:698–704. doi: 10.1017/S1047951114000742.
    1. Rossi L., Penela D., Doni L., Marazzi R., Napoli V., Napoli L. Development of simulation combining a physical heart model and three-dimensional system for electrophysiology training. Pacing Clin. Electrophysiol. 2018;41:1461–1466. doi: 10.1111/pace.13508.
    1. Valverde I., Gomez G. 3D-printed models for planning endovascular stenting in transverse aortic arch hypo-plasia. Catheter. Cardiovasc. Interv. 2015;85:1006–1012. doi: 10.1002/ccd.25810.
    1. Yeazel T.R., Becker M.L. Advancing Towards 3D Printing of Bioresorbable Shape Memory Polymer Stents. Biomacromolecules. 2020;21:3957–3965. doi: 10.1021/acs.biomac.0c01082.
    1. Modi B.N., Ryan M., Chattersingh A. Optimal Application of Fractional Flow Reserve to Assess Serial Coronary Artery Disease: A 3D-Printed Experimental Study with Clinical Validation. J. Am. Heart Assoc. 2018;7:e010279. doi: 10.1161/JAHA.118.010279.
    1. Oliveira-Santos M., Oliveira-Santos E., Marinho A.V., Leite L., Guardado J., Matos V., Pego G.M., Marques J.S. Patient-specific 3D printing simulation to guide complex coronary intervention. Rev. Port. Cardiol. 2018;37:541.e1–541.e4. doi: 10.1016/j.repc.2018.02.007.
    1. Wang H., Liu J., Zheng X. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies. Sci. Rep. 2015;5:10945. doi: 10.1038/srep10945.
    1. Velasco Forte M.N., Byrne N., Valverde Perez I., Bell A., Gómez-Ciriza G., Krasemann T., Sievert H., Simpson J., Pushparajah K., Razavi R., et al. 3D-printed models in patients with coronary artery fistulae: Anatomical assessment and interventional planning. Eurointervention. 2017;13:e1080–e1083. doi: 10.4244/EIJ-D-16-00897.
    1. Sedaghat A., Wolpers A.C. Percutaneous treatment of a saccular coronary artery aneurysm using multimodal imaging and rapid prototyping. Eur. Heart J. 2018;39:4125. doi: 10.1093/eurheartj/ehy484.
    1. Mohamed E., Telila T., Osaki S., Jacobson K. Percutaneous closure of left ventricle pseudoaneurysm using 3D-printed heart model for procedure planning: A novel approach. Catheter. Cardiovasc. Interv. 2019;94:874–877. doi: 10.1002/ccd.28405.
    1. Bompotis G., Meletidou M., Karakanas A., Sotiriou S., Sachpekidis V., Konstantinidou M., Lazaridis I. Transcatheter Aortic Valve Implantation using 3-D printing modeling assistance. A single center experience. Hell. J. Cardiol. 2020;61:131–132. doi: 10.1016/j.hjc.2019.01.012.
    1. Baribeau Y., Sharkey A., Mahmood E., Feng R., Chaudhary O., Baribeau V., Khabbaz K. Three-Dimensional Printing and Transesophageal Echocardiographic Imaging of Patient-Specific Mitral Valve Models in a Pulsatile Phantom Model. J. Cardiothorac. Vasc. Anesth. 2019;33:3469–3475. doi: 10.1053/j.jvca.2019.07.141.
    1. Iriart X., Ciobotaru V., Martin C., Cochet H., Jalal Z., Thambo J.-B., Quessard A. Role of cardiac imaging and three-dimensional printing in percutaneous appendage closure. Arch. Cardiovasc. Dis. 2018;111:411–420. doi: 10.1016/j.acvd.2018.04.005.
    1. Lodziński P., Balsam P., Peller M. Three-dimensional print facilitated ventricular tachycardia ablation in patient with corrected congenital heart disease. Cardiol. J. 2017;24:584–585. doi: 10.5603/CJ.2017.0119.
    1. Randles A., Frakes D.H., Leopold J.A. Computational Fluid Dynamics and Additive Manufacturing to Diagnose and Treat. Cardiovascular Disease. Trends Biotechnol. 2017;35:1049–1061. doi: 10.1016/j.tibtech.2017.08.008.
    1. De Zélicourt D., Pekkan K., Kitajima H., Frakes D., Yoganathan A.P. Single-step stereolithography of complex anatomical models for optical flow measurements. J. Biomech. Eng. 2005;127:204–207. doi: 10.1115/1.1835367.
    1. Taylor C.A., Fonte T.A. Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve. J. Am. Coll. Cardiol. 2013;61:2233–2241. doi: 10.1016/j.jacc.2012.11.083.
    1. Esses S.J., Berman P. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am. J. Roentgenol. 2011;196:W683–W688. doi: 10.2214/AJR.10.5681.
    1. Maragiannis D., Jackson M.S. Replicating Patient-Specific Severe Aortic Valve Stenosis With Functional 3D Modeling. Circ. Cardiovasc. Imaging. 2015;8:e003626. doi: 10.1161/CIRCIMAGING.115.003626.
    1. Qian Z., Wang K. Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing. JACC Cardiovasc. Imaging. 2017;10:719–731. doi: 10.1016/j.jcmg.2017.04.005.
    1. Gross B.C., Erkal J.L., Lockwood S.Y., Chen C., Spence D.M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 2014;86:3240–3253. doi: 10.1021/ac403397r.
    1. Ozbolat I.T., Yu Y. Bioprinting toward organ fabrication: Challenges and future trends. IEEE Trans. Biomed. Eng. 2013;60:691–699. doi: 10.1109/TBME.2013.2243912.
    1. Mahrholdt H., Wagner A. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur. Heart J. 2005;26:1461–1474. doi: 10.1093/eurheartj/ehi258.
    1. Liao J., Huang W., Liu G. Animal models of coronary heart disease. J. Biomed. Res. 2016;30:3–10. doi: 10.7555/jbr.30.20150051.
    1. Tanimoto A., Kawaguchi H. Microminipig, a non-rodent experimental animal optimized for life science research: Novel atherosclerosis model induced by high fat and cholesterol diet. J. Pharmacol. Sci. 2011;115:115–121.
    1. Beg S., Almalki W.H. 3D printing for drug delivery and biomedical applications. Drug Discov. Today. 2020;25:1668–1681. doi: 10.1016/j.drudis.2020.07.007.
    1. Gear J., Craig S. Radioactive 3D printing for the production of molecular imaging phantoms. Phys. Med. Biol. 2020;65:17. doi: 10.1088/1361-6560/aba40e.
    1. Cui X., Boland T. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul. 2012;6:149–155. doi: 10.2174/187221112800672949.
    1. Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958.
    1. Gorenek B., Blomström C. Cardiac arrhythmias in acute coronary syndromes: Position paper from the joint EHRA, ACCA, and EAPCI task force. EP Eur. 2014;16:1655–1673. doi: 10.1093/europace/euu208.
    1. Henkel D.M., Witt B.J. Ventricular arrhythmias after acute myocardial infarction: A 20-year community study. Am. Heart J. 2006;151:806–812. doi: 10.1016/j.ahj.2005.05.015.
    1. Shin S.R., Jung S.M. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano. 2013;7:2369–2380. doi: 10.1021/nn305559j.
    1. Basara G., Saeidi-Javash M. Electrically conductive 3D-printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering. Acta Biomater. 2020;S1742–S7061:30747–30749. doi: 10.1016/j.actbio.2020.12.033.
    1. Izadifar M., Chapman D. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Eng. Part C Methods. 2018;24:74–88. doi: 10.1089/ten.tec.2017.0346.
    1. Vermeulen N., Haddow G., Seymour T., Faulkner-Jones A., Shu W. 3D bioprint me: A socioethical view of bioprinting human organs and tissues. J. Med. Ethics. 2017;43:618–624. doi: 10.1136/medethics-2015-103347.
    1. Yeung E., Fukunishi T. Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo. J. Tissue Eng. Regen. Med. 2019;13:2031–2039. doi: 10.1002/term.2954.
    1. Gaetani R., Feyen D.A. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339–348. doi: 10.1016/j.biomaterials.2015.05.005.
    1. Jang J., Park H.J. 3D-printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–274. doi: 10.1016/j.biomaterials.2016.10.026.
    1. Gao L., Kupfer M.E. Myocardial Tissue Engineering with Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold. Circ. Res. 2017;120:1318–1325. doi: 10.1161/CIRCRESAHA.116.310277.
    1. Wang Z., Lee S.J. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48–56. doi: 10.1016/j.actbio.2018.02.007.
    1. Su P., Sang J.L. In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system. Mater. Lett. 2015;141:355–358. doi: 10.1016/j.matlet.2014.11.119.
    1. Ventola C.L. Medical Applications for 3D Printing: Current and Projected Uses. PT Peer-Rev. J. Formul. Manag. 2014;39:704–711.
    1. Hoy M.B. 3D printing: Making things at the library. Med. Ref. Serv. Q. 2013;32:94–99. doi: 10.1080/02763869.2013.749139.

Source: PubMed

3
Abonnere