Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis

Annabella Benedek, Daniel Cernica, Andras Mester, Diana Opincariu, Roxana Hodas, Ioana Rodean, Johanna Keri, Theodora Benedek, Annabella Benedek, Daniel Cernica, Andras Mester, Diana Opincariu, Roxana Hodas, Ioana Rodean, Johanna Keri, Theodora Benedek

Abstract

Ischemic stroke is associated with a tremendous economic and societal burden, and only a few therapies are currently available for the treatment of this devastating disease. The main therapeutic approaches used nowadays for the treatment of ischemic brain injury aim to achieve reperfusion, neuroprotection and neurorecovery. Therapeutic angiogenesis also seems to represent a promising tool to improve the prognosis of cerebral ischemia. This review aims to present the modern concepts and the current status of regenerative therapy for ischemic stroke and discuss the main results of major clinical trials addressing the effectiveness of stem cell therapy for achieving neuroregeneration in ischemic stroke. At the same time, as a glimpse into the future, this article describes modern concepts for stroke prevention, such as the implantation of bioprinted scaffolds seeded with stem cells, whose 3D geometry is customized according to carotid shear stress.

Keywords: 3D-bioprinted scaffolds; endothelial shear stress; ischemic stroke; neuroprotection; neuroregeneration; regenerative therapy; stem cells.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Stem cell therapy in ischemic stroke: (a) Vulnerable carotid artery plaque with altered endothelial shear stress (ESS) resulting in ischemic stroke; (b) 3D scaffold providing plaque stabilization, the correction of carotid stenosis and ESS with simultaneous neuroprotection and neuroregeneration at the level of the ischemic brain.

References

    1. Amemori T., Romanyuk N., Jendelova P., Herynek V., Turnovcova K., Prochazka P., Kapkalova M., Cocks G., Price J., Sykova E. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res. Ther. 2013;4:68. doi: 10.1186/scrt219.
    1. Xiong Y., Mahmood A., Chopp M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr. Opin. Investig. Drugs. 2010;11:298–308.
    1. Zhang Z.G., Chopp M. Neurorestorative therapies for stroke: Underlying mechanisms and translation to the clinic. Lancet Neurol. 2009;8:491–500. doi: 10.1016/S1474-4422(09)70061-4.
    1. Liu X.S., Zhang Z.G., Zhang R.L., Gregg S., Morris D.C., Wang Y., Chopp M. Stroke induces gene profile changes associated with neurogenesis and angiogenesis in adult subventricular zone progenitor cells. J. Cereb. Blood Flow Metab. 2007;27:564–574. doi: 10.1038/sj.jcbfm.9600371.
    1. Hayashi T., Noshita N., Sugawara T., Chan P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 2003;23:166–180. doi: 10.1097/01.WCB.0000041283.53351.CB.
    1. Krupinski J., Kaluza J., Kumar P., Kumar S., Wang J.M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25:1794–1798. doi: 10.1161/01.STR.25.9.1794.
    1. Bhartiya D. Clinical Translation of Stem Cells for Regenerative Medicine: A Comprehensive Analysis. Circ. Res. 2019;124:840–842. doi: 10.1161/CIRCRESAHA.118.313823.
    1. Kalladka D., Sinden J., Pollock K., Haig C., McLean J., Smith W., McConnachie A., Santosh C., Bath P.M., Dunn L., et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet. 2016;388:787–796. doi: 10.1016/S0140-6736(16)30513-X.
    1. Abbasi-Kangevari M., Ghamari S.H., Safaeinejad F., Bahrami S., Niknejad H. Potential Therapeutic Features of Human Amniotic Mesenchymal Stem Cells in Multiple Sclerosis: Immunomodulation, Inflammation Suppression, Angiogenesis Promotion, Oxidative Stress Inhibition, Neurogenesis Induction, MMPs Regulation, and Remyelination Stimulation. Front. Immunol. 2019;10:238.
    1. Yu S.P., Wei Z., Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl. Stroke Res. 2013;4:76–88. doi: 10.1007/s12975-012-0251-0.
    1. Thwaites J.W., Reebye V., Mintz P., Levicar N., Habib N. Cellular replacement and regenerative medicine therapies in ischemic stroke. Regen. Med. 2012;7:387–395. doi: 10.2217/rme.12.2.
    1. Mead B., Logan A., Berry M., Leadbeater W., Scheven B.A. Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair. Stem Cells. 2017;35:61–67. doi: 10.1002/stem.2398.
    1. Koh S.H., Park H.H. Neurogenesis in stroke recovery. Transl. Stroke Res. 2017;8:3–13. doi: 10.1007/s12975-016-0460-z.
    1. Kuroda S., Koh M., Hori E., Hayakawa Y., Akai T. Muse Cell: A New Paradigm for Cell Therapy and Regenerative Homeostasis in Ischemic Stroke. Adv. Exp. Med. Biol. 2018;1103:187–198.
    1. Baker E.W., Platt S.R., Lau V.W., Grace H.E., Holmes S.P., Wang L., Duberstein K.J., Howerth E.W., Kinder H.A., Stice S.L., et al. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci. Rep. 2017;7:10075. doi: 10.1038/s41598-017-10406-x.
    1. Yamashita T., Liu W., Matsumura Y., Miyagi R., Zhai Y., Kusaki M., Hishikawa N., Ohta Y., Kim S.M., Kwak T.H., et al. Novel Therapeutic Transplantation of Induced Neural Stem Cells for Stroke. Cell Transplant. 2017;26:461–467. doi: 10.3727/096368916X692988.
    1. Boese A.C., Le Q.S.E., Pham D., Hamblin M.H., Lee J.P. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res. Ther. 2018;9:154. doi: 10.1186/s13287-018-0913-2.
    1. Takagi T., Yoshimura S., Sakuma R., Nakano-Doi A., Matsuyama T., Nakagomi T. Novel regenerative therapies based on regionally induced multipotent stem cells in post-stroke brains: Their origin, characterization, and perspective. Transl. Stroke Res. 2017;8:515–528. doi: 10.1007/s12975-017-0556-0.
    1. Eckert M.A., Vu Q., Xie K., Yu J., Liao W., Cramer S.C., Zhao W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J. Cereb. Blood Flow Metab. 2013;33:1322–1334. doi: 10.1038/jcbfm.2013.91.
    1. Benedek I., Bucur O., Benedek T. Intracoronary infusion of mononuclear bone marrow-derived stem cells is associated with a lower plaque burden after four years. J. Atheroscler. Thromb. 2014;21:217–229. doi: 10.5551/jat.19745.
    1. Miyamoto M., Nakamura K., Shichinohe H., Yamauchi T., Ito M., Saito H., Kawabori M., Osanai T., Sasaki T., Houkin K., Kuroda S. Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke. Stem Cells Int. 2018;2018:4829534. doi: 10.1155/2018/4829534.
    1. Uchida H., Niizuma K., Kushida Y., Wakao S., Tominaga T., Borlongan C.V., Dezawa M. Human Muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke. 2017;48:428–435. doi: 10.1161/STROKEAHA.116.014950.
    1. Takizawa S., Nagata E., Nakayama T., Masuda H., Asahara T. Recent progress in endothelial progenitor cell culture systems: Potential for stroke therapy. Neurol. Med. Chir. 2016;56:302–309. doi: 10.2176/nmc.ra.2016-0027.
    1. Zhao Y.H., Yuan B., Chen J., Feng D.H., Zhao B., Qin C., Chen Y.F. Endothelial progenitor cells: Therapeutic perspective for ischemic stroke. CNS Neurosci. Ther. 2013;19:67–75. doi: 10.1111/cns.12040.
    1. Wankhade U.D., Shen M., Kolhe R., Fulzele S. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering. Stem Cells Int. 2016;2016:3206807. doi: 10.1155/2016/3206807.
    1. Geng W., Tang H., Luo S., Lv Y., Liang D., Kang X., Hing W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res. 2019;11:780–792.
    1. Gong B., Dong Y., Jiang W., Shan Y., Zhou B., Li W. Intravenous Transplants of Human Adipose Derived Stem Cell Protect the Rat From Ischemia-Induced Damage. J. Stroke Cardiovasc. Dis. 2019;28:595–603. doi: 10.1016/j.jstrokecerebrovasdis.2018.10.037.
    1. Asahara T., Masuda H., Takahashi T., Kalka C., Pastore C., Silver M., Kearne M., Magner M., Isner J.M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999;85:221–228. doi: 10.1161/01.RES.85.3.221.
    1. Gyöngyösi M., Hemetsberger R., Posa A., Charwat S., Pavo N., Petnehazy O., Petrasi Z., Pavo I.J., Hemetsberger H., Benedek I., et al. Hypoxia-inducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction. J. Cardiovasc. Transl. Res. 2010;3:114–121. doi: 10.1007/s12265-009-9154-1.
    1. Hill J.M., Zalos G., Halcox J.P., Schenke W.H., Waclawiw M.A., Quyyumi A.A., Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 2003;348:593–600. doi: 10.1056/NEJMoa022287.
    1. Zhang Z.G., Zhang L., Jiang Q., Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ. Res. 2002;90:284–288. doi: 10.1161/hh0302.104460.
    1. Ghani U., Shuaib A., Salam A., Nasir A., Shuaib U., Jeerakathil T., Sher F., O’Rourke F., Nasser A.M., Schwindt B., et al. Endothelial progenitor cells during cerebrovascular disease. Stroke. 2005;36:151–153. doi: 10.1161/01.STR.0000149944.15406.16.
    1. Li Y.F., Ren L.N., Guo G., Cannella L.A., Chernaya V., Samuel S., Liu S., Wang H., Yang X.F. Endothelial progenitor cells in ischemic stroke: An exploration from hypothesis to therapy. J. Hematol. Oncol. 2015;8:33. doi: 10.1186/s13045-015-0130-8.
    1. Chen J., Zhang Z.G., Li Y., Wang L., Xu Y.X., Gautam S.C., Lu M., Zhu Z., Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. 2003;92:692–699. doi: 10.1161/01.RES.0000063425.51108.8D.
    1. Arenillas J.F., Sobrino T., Castillo J., Dávalos A. The role of angiogenesis in damage and recovery from ischemic stroke. Curr. Treat. Options Cardiovasc. Med. 2007;9:205–212. doi: 10.1007/s11936-007-0014-5.
    1. Wei L., Keogh C.L., Whitaker V.R., Theus M.H., Yu S.P. Angiogenesis and stem cell transplantation as potential treatments of cerebral ischemic stroke. Pathophysiology. 2005;12:47–62. doi: 10.1016/j.pathophys.2004.11.002.
    1. Sun Y., Jin K., Xie L., Childs J., Mao X.O., Logvinova A., Greenberg D.A. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Investig. 2003;111:1843–1851. doi: 10.1172/JCI200317977.
    1. Carmeliet P., Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: Implications for neurological disorders. Semin. Cell Dev. Biol. 2002;13:39–53. doi: 10.1006/scdb.2001.0290.
    1. Ferrara N., Gerber H.P. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 2001;106:148–156. doi: 10.1159/000046610.
    1. Zhang Z.G., Zhang L., Jiang Q., Zhang R., Davies K., Powers C., van Bruggen N., Chopp M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Investig. 2002;106:829–838. doi: 10.1172/JCI9369.
    1. Weis S.M., Cheresh D.A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497–504. doi: 10.1038/nature03987.
    1. Yano A., Shingo T., Takeuchi A., Yasuhara T., Kobayashi K., Takahashi K., Muraoka K., Matsui T., Miyoshi Y., Hamada H., et al. Encapsulated vascular endothelial growth factor—secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J. Neurosurg. 2005;103:104–114. doi: 10.3171/jns.2005.103.1.0104.
    1. Croll S.D., Goodman J.H., Scharfman H.E. Vascular Endothelial Growth Factor (VEGF) in Seizures. Adv. Exp. Med. Biol. 2004;548:57–68.
    1. Bates D.O., Harper S.J. Regulation of vascular permeability by vascular endothelial growth factors. Vasc. Pharmacol. 2002;39:225–237. doi: 10.1016/S1537-1891(03)00011-9.
    1. Forstreuter F., Lucius R., Mentlein R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J. Neuroimmunol. 2002;132:93–98. doi: 10.1016/S0165-5728(02)00315-6.
    1. Valable S., Montaner J., Bellail A., Berezowski V., Brillault J., Cecchelli R., Divoux D., MacKenzie E.T., Bernaudin M., Roussel S., et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: Both effects decreased by Ang-1. J. Cereb. Blood Flow Metab. 2005;25:1491–1504. doi: 10.1038/sj.jcbfm.9600148.
    1. Zheng Y., Murakami M., Takahashi H., Yamauchi M., Kiba A., Yamaguchi S., Yabana N., Alitalo K., Shibuya M. Chimeric VEGF-ENZ7/PlGF promotes angiogenesis via VEGFR-2 without significant enhancement of vascular permeability and inflammation. Arterioscler. Thromb. Vasc. Biol. 2006;26:2019–2026. doi: 10.1161/01.ATV.0000233336.53574.a1.
    1. Gomez R., Gonzalez-Izquierdo M., Zimmermann R.C., Novella-Maestre E., Alonso-Muriel I., Sanchez-Criado J., Remohi J., Simon C., Pellicer A. Low-dose dopamine agonist administration blocks vascular endothelial growth factor (VEGF)-mediated vascular hyperpermeability without altering VEGF receptor 2-dependent luteal angiogenesis in a rat ovarian hyperstimulation model. Endocrinology. 2006;147:5400–5411. doi: 10.1210/en.2006-0657.
    1. Klein R., Mahlberg N., Ohren M., Ladwig A., Neumaier B., Graf R., Hoehn M., Albrechtsen M., Rees S., Fink G.R., et al. The neural cell adhesion molecule-derived (NCAM)-peptide FG loop (FGL) mobilizes endogenous neural stem cells and promotes endogenous regenerative capacity after stroke. J. Neuroimmune Pharmacol. 2016;11:708–720. doi: 10.1007/s11481-016-9694-5.
    1. Gertz K., Priller J., Kronenberg G., Fink K.B., Winter B., Schröck H., Ji S., Milosevic M., Harms C., Böhm M., et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase–dependent augmentation of neovascularization and cerebral blood flow. Circ. Res. 2006;99:1132–1140. doi: 10.1161/01.RES.0000250175.14861.77.
    1. Laufs U., Werner N., Link A., Endres M., Wassmann S., Jürgens K., Miche E., Böhm M., Nickenig G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109:220–226. doi: 10.1161/01.CIR.0000109141.48980.37.
    1. Zhang F., Wu Y., Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience. 2011;177:170–176. doi: 10.1016/j.neuroscience.2011.01.018.
    1. Endres M. Statins and stroke. J. Cereb. Blood Flow Metab. 2005;25:1093–1110. doi: 10.1038/sj.jcbfm.9600116.
    1. Chen J., Zhang Z.G., Li Y., Wang Y., Wang L., Jiang H., Zhang C., Lu M., Katakowski M., Feldkamp C.S., et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann. Neurol. 2003;53:743–751. doi: 10.1002/ana.10555.
    1. Zhang R., Wang L., Zhang L., Chen J., Zhu Z., Zhang Z., Chopp M. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 2003;92:308–313. doi: 10.1161/01.RES.0000056757.93432.8C.
    1. Chen J., Zhang C., Jiang H., Li Y., Zhang L., Robin A., Katakowski M., Lu M., Chopp M. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J. Cereb. Blood Flow Metab. 2005;25:281–290. doi: 10.1038/sj.jcbfm.9600034.
    1. Zhu B., Zhang L., Alexeyev M., Alvarez D.F., Strada S.J., Stevens T. Type 5 phosphodiesterase expression is a critical determinant of the endothelial cell angiogenic phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;296:L220–L228. doi: 10.1152/ajplung.90474.2008.
    1. Li L., Jiang Q., Zhang L., Ding G., Zhang Z.G., Li Q., Ewing J.R., Lu M., Panda S., Ledbetter K.A., et al. Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res. 2007;1132:185–192. doi: 10.1016/j.brainres.2006.10.098.
    1. Zhang L., Zhang Z., Zhang R.L., Cui Y., LaPointe M.C., Silver B., Chopp M. Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res. 2006;1118:192–198. doi: 10.1016/j.brainres.2006.08.028.
    1. Gao F., Sugita M., Nukui H. Phosphodiesterase 5 inhibitor, zaprinast, selectively increases cerebral blood flow in the ischemic penumbra in the rat brain. Neurol. Res. 2005;27:638–643. doi: 10.1179/016164105X25135.
    1. Bednar M.M. The role of sildenafil in the treatment of stroke. Curr. Opin. Investig. Drugs. 2008;9:754–759.
    1. Pistrosch F., Herbrig K., Oelschlaegel U., Richter S., Passauer J., Fischer S., Gross P. PPARγ-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis. 2005;183:163–167. doi: 10.1016/j.atherosclerosis.2005.03.039.
    1. Gensch C., Clever Y.P., Werner C., Hanhoun M., Böhm M., Laufs U. The PPAR-γ agonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis. 2007;192:67–74. doi: 10.1016/j.atherosclerosis.2006.06.026.
    1. Seifert H.A., Pennypacker K.R. Molecular and cellular immune responses to ischemic brain injury. Trans. Stroke Res. 2014;5:543–553. doi: 10.1007/s12975-014-0349-7.
    1. Stonesifer C., Corey S., Ghanekar S., Diamandis Z., Acosta S.A., Borlongan C.V. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog. Neurobiol. 2017;158:94–131. doi: 10.1016/j.pneurobio.2017.07.004.
    1. Bang O.Y. Clinical trials of adult stem cell therapy in patients with ischemic stroke. J. Clin. Neurol. 2016;12:14–20. doi: 10.3988/jcn.2016.12.1.14.
    1. Gyöngyösi M., Hemetsberger R., Wolbank S., Pichler V., Kaun C., Posa A., Petrasi Z., Petnehazy Ö., Hofer-Warbinek R., de Martin R., et al. Delayed recovery of myocardial blood flow after intracoronary stem cell administration. Stem Cell Rev. 2011;7:616–623. doi: 10.1007/s12015-010-9213-7.
    1. Kempermann G., Wiskott L., Gage F.H. Functional significance of adult neurogenesis. Curr. Opin. Neurobiol. 2004;14:186–191. doi: 10.1016/j.conb.2004.03.001.
    1. Nagy Z., Nardai S. Cerebral ischemia/repefusion injury: From bench space to bedside. Brain Res. Bull. 2017;134:30–37. doi: 10.1016/j.brainresbull.2017.06.011.
    1. Sandu R.E., Balseanu A.T., Bogdan C., Slevin M., Petcu E., Popa-Wagner A. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy? Exp. Gerontol. 2017;94:73–77. doi: 10.1016/j.exger.2017.01.008.
    1. Iadecola C., Anrather J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011;17:796–808. doi: 10.1038/nm.2399.
    1. Popa-Wagner A., Filfan M., Uzoni A., Pourgolafshan P., Buga A.M. Poststroke cell therapy of the aged brain. Neural Plast. 2015;2015:839638. doi: 10.1155/2015/839638.
    1. Widimsky P., Hopkins L.N. Catheter-based interventions for acute ischaemic stroke. Eur. Heart J. 2015;37:3081–3089. doi: 10.1093/eurheartj/ehv521.
    1. Kikuchi K., Tanaka E., Murai Y., Tancharoen S. Clinical trials in acute ischemic stroke. CNS Drugs. 2014;28:929–938. doi: 10.1007/s40263-014-0199-6.
    1. Boltze J., Arnold A., Walczak P., Jolkkonen J., Cui L., Wagner D.C. The dark side of the force–constraints and complications of cell therapies for stroke. Front. Neurol. 2015;6:155. doi: 10.3389/fneur.2015.00155.
    1. Marei H.E., Hasan A., Rizzi R., Althani A., Afifi N., Cenciarelli C., Caceci T., Shuaib A. Potential of stem cell-based therapy for ischemic stroke. Front. Neurol. 2018;9:34. doi: 10.3389/fneur.2018.00034.
    1. Bang O.Y., Kim E.H., Cha J.M., Moon G.J. Adult stem cell therapy for stroke: Challenges and progress. J. Stroke. 2016;18:256–266. doi: 10.5853/jos.2016.01263.
    1. Rosado-de-Castro P.H., Schmidt F.R., Battistella V., Lopes de Souza S.A., Gutfilen B., Goldenberg R.C., Kasai-Brunswick T.H., Vairo L., Silva R.M., Wajnberg E., et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen. Med. 2013;8:145–155. doi: 10.2217/rme.13.2.
    1. Moniche F., Gonzalez A., Gonzalez-Marcos J.R., Carmona M., Piñero P., Espigado I., Garcia-Solis D., Cayuela A., Montaner J., Boada C., et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: A pilot clinical trial. Stroke. 2012;43:2242–2244. doi: 10.1161/STROKEAHA.112.659409.
    1. Prasad K., Sharma A., Garg A., Mohanty S., Bhatnagar S., Johri S., Singh K.K., Nair V., Sarkar R.S., Gorthi S.P., et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: A multicentric, randomized trial. Stroke. 2014;45:3618–3624. doi: 10.1161/STROKEAHA.114.007028.
    1. Yozbatiran N., Der-Yeghiaian L., Cramer S.C. A standardized approach to performing the action research arm test. Neurorehabil. Neural Repair. 2008;22:78–90. doi: 10.1177/1545968307305353.
    1. Díez-Tejedor E., Gutiérrez-Fernández M., Martínez-Sánchez P., Rodríguez-Frutos B., Ruiz-Ares G., Lara M.L., Gimeno B.F. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J. Stroke Cerebrovasc. Dis. 2014;23:2694–2700. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.011.
    1. Prasad K., Mohanty S., Bhatia R., Srivastava M.V.P., Garg A., Srivastava A., Goyal V., Tripathi M., Kumar A., Bal C., et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: A pilot study. Indian J. Med. Res. 2012;136:221–228.
    1. Hess D.C., Wechsler L.R., Clark W.M., Savitz S.I., Ford G.A., Chiu D., Yavagal D.R., Uchino K., Liebeskind D.S., Auchus A.P., et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16:360–368. doi: 10.1016/S1474-4422(17)30046-7.
    1. Steinberg G.K., Kondziolka D., Wechsler L.R., Lunsford L.D., Kim A.S., Johnson J.N., Bates D., Poggio G., Case C., McGrogan M., et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow–derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg. 2018;1:1–11. doi: 10.3171/2018.5.JNS173147.
    1. Mackie A.R., Losordo D.W. CD34-positive stem cells in the treatment of heart and vascular disease in human beings. Tex. Heart Inst. J. 2011;38:474–485.
    1. Intravenous Stem Cells After Ischemic Stroke (ISIS) [(accessed on 3 March 2019)]; Available online: .
    1. Moniche F., Escudero I., Zapata-Arriaza E., Usero-Ruiz M., Prieto-León M., de la Torre J., Gamero M.A., Tamayo J.A., Ochoa-Sepúlveda J.J., Maestre J., et al. Intra-arterial bone marrow mononuclear cells (BM-MNCs) transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial. Int. J. Stroke. 2015;10:1149–1152. doi: 10.1111/ijs.12520.
    1. Banerjee S., Bentley P., Hamady M., Marley S., Davis J., Shlebak A., Nicholls J., Williamson D.A., Jensen S.L., Gordon M., et al. Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Transl. Med. 2014;3:1322–1330. doi: 10.5966/sctm.2013-0178.
    1. Study of Autologous Stem Cell Transplantation for Patients With Ischemic Stroke. [(accessed on 3 March 2019)]; Available online: .
    1. Jin K., Sun Y., Xie L., Mao X.O., Childs J., Peel A., Logvinova A., Banwait S., Greenberg D.A. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol. Dis. 2005;18:366–374. doi: 10.1016/j.nbd.2004.10.010.
    1. Binder D.K., Rau G., Starr P.A. Hemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact. Funct. Neurosurg. 2003;80:28–31. doi: 10.1159/000075156.
    1. Potts M.B., Silvestrini M.T., Lim D.A. Devices for cell transplantation into the central nervous system: Design considerations and emerging technologies. Surg. Neurol. Int. 2013;4:S22–S30.
    1. Chen L., Xi H., Huang H., Zhang F., Liu Y., Chen D., Xiao J. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant. 2013;22:S83–S91. doi: 10.3727/096368913X672154.
    1. Li G., Bonamici N., Dey M., Lesniak M.S., Balyasnikova I.V. Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies. Expert Opin. Drug Deliv. 2018;15:163–172. doi: 10.1080/17425247.2018.1378642.
    1. Galeano C., Qiu Z., Mishra A., Farnsworth S.L., Hemmi J.J., Moreira A., Edenhoffer P., Hornsby P.J. The Route by Which Intranasally Delivered Stem Cells Enter the Central Nervous System. Cell Transplant. 2018;27:501–514. doi: 10.1177/0963689718754561.
    1. Al Fauzi A., Suroto N.S., Bajamal A.H., Machfoed M.H. Intraventricular transplantation of autologous bone marrow mesenchymal stem cells via Ommaya reservoir in persistent vegetative state patients after haemorrhagic stroke: Report of two cases & review of the literature. J. Stem Cells Regen. Med. 2016;12:100–104.
    1. Al Fauzi A., Sumorejo P., Suroto N.S., Parenrengi M.A., Wahyuhadi J., Turchan A., Mahyudin F., Suroto H., Rantam F.A., Machfoed M.H., et al. Clinical Outcomes of Repeated Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Chronic Haemorrhagic Stroke. A One-Year Follow Up. Open Neurol. J. 2017;11:74–83. doi: 10.2174/1874205X01711010074.
    1. Misra V., Lal A., El Khoury R., Chen P.R., Savitz S.I. Intra-arterial delivery of cell therapies for stroke. Stem Cells Dev. 2011;21:1007–1015. doi: 10.1089/scd.2011.0612.
    1. Savitz S.I., Misra V., Kasam M., Juneja H., Cox C.S., Jr., Alderman S., Aisiku I., Kar S., Gee AGrotta J.C. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann. Neurol. 2011;70:59–69. doi: 10.1002/ana.22458.
    1. Battistella V., de Freitas G.R., da Fonseca L.M.B., Mercante D., Gutfilen B., Goldenberg R.C., Dias J.V., Kasai-Brunswick T.H., Wajnberg E., Rosado-de-Castro P.H., et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen. Med. 2011;6:45–52. doi: 10.2217/rme.10.97.
    1. Kamiya N., Ueda M., Igarashi H., Nishiyama Y., Suda S., Inaba T., Katayama Y. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats. Life Sci. 2008;83:433–437. doi: 10.1016/j.lfs.2008.07.018.
    1. Li Y., Chopp M., Chen J., Wang L., Gautam S.C., Xu Y.X., Zhang Z. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J. Cereb. Blood Flow Metab. 2000;20:1311–1319. doi: 10.1097/00004647-200009000-00006.
    1. Ge J., Guo L., Wang S., Zhang Y., Cai T., Zhao R.C., Wu Y. The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev. 2014;10:295–303. doi: 10.1007/s12015-013-9492-x.
    1. Schrepfer S., Deuse T., Reichenspurner H., Fischbein M.P., Robbins R.C., Pelletier M.P. Stem cell transplantation: The lung barrier. Transplant. Proc. 2007;39:573–576. doi: 10.1016/j.transproceed.2006.12.019.
    1. Toma C., Wagner W.R., Bowry S., Schwartz A., Villanueva F. Fate of culture-expanded mesenchymal stem cells in the microvasculature: In vivo observations of cell kinetics. Circ. Res. 2009;104:398–402. doi: 10.1161/CIRCRESAHA.108.187724.
    1. Janowski M., Lyczek A., Engels C., Xu J., Lukomska B., Bulte J.W., Walczak P. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J. Cereb. Blood Flow Metab. 2013;33:921–927. doi: 10.1038/jcbfm.2013.32.
    1. Jung J.W., Kwon M., Choi J.C., Shin J.W., Park I.W., Choi B.W., Kim J.Y. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med. J. 2013;54:1293–1296. doi: 10.3349/ymj.2013.54.5.1293.
    1. Kenmuir C.L., Wechsler L.R. Update on cell therapy for stroke. Stroke Vasc. Neurol. 2017;2:59–64. doi: 10.1136/svn-2017-000070.
    1. Seminatore C., Polentes J., Ellman D., Kozubenko N., Itier V., Tine S., Tritschler L., Brenot M., Guidou E., Blondeau J., et al. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke. 2010;41:153–159. doi: 10.1161/STROKEAHA.109.563015.
    1. Chang D.J., Oh S.H., Lee N., Choi C., Jeon I., Kim H.S., Shin D.A., Lee S.E., Kim D., Song J. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp. Mol. Med. 2013;45:e53. doi: 10.1038/emm.2013.93.
    1. Steward O., Sharp K.G., Yee K.M., Hatch M.N., Bonner J.F. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J. Neurosci. 2014;34:14013–14021. doi: 10.1523/JNEUROSCI.3066-14.2014.
    1. Bladin C.F., Alexandrov A.V., Bellavance A., Bornstein N., Chambers B., Coté R., Lebrun L., Pirisi A., Norris J.W. Seizures after stroke: A prospective multicenter study. Arch. Neurol. 2000;57:1617–1622. doi: 10.1001/archneur.57.11.1617.
    1. Bachier C., Potter J., Potter G., Sugay R., Shaughnessy P., Chan K., Jude V., Madden R., LeMaistre C.F. High white blood cell concentration in the peripheral blood stem cell product can induce seizures during infusion of autologous peripheral blood stem cells. Biol. Blood Marrow Transplant. 2012;18:1055–1060. doi: 10.1016/j.bbmt.2011.12.500.
    1. Wichterle H., Lieberam I., Porter J.A., Jessell T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385–397. doi: 10.1016/S0092-8674(02)00835-8.
    1. Nagai N., Kawao N., Okada K., Okumoto K., Teramura T., Ueshima S., Umemura K., Matsuo O. Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis. Neuroreport. 2010;21:575–579. doi: 10.1097/WNR.0b013e32833a7d2c.
    1. Toda H., Takahashi J., Iwakami N., Kimura T., Hoki S., Mozumi-Kitamura K., Ono S., Hashimoto N. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci. Lett. 2001;316:9–12. doi: 10.1016/S0304-3940(01)02331-X.
    1. Guzman R., Bliss T., De Los Angeles A., Moseley M., Palmer T., Steinberg G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J. Neurosci. Res. 2008;86:873–882. doi: 10.1002/jnr.21542.
    1. Honmou O., Onodera R., Sasaki M., Waxman S.G., Kocsis J.D. Mesenchymal stem cells: Therapeutic outlook for stroke. Trends Mol. Med. 2012;18:292–297. doi: 10.1016/j.molmed.2012.02.003.
    1. Huang W., Mo X., Qin C., Zheng J., Liang Z., Zhang C. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol. Res. 2013;35:320–328. doi: 10.1179/1743132812Y.0000000151.
    1. Lee J.S., Hong J.M., Moon G.J., Lee P.H., Ahn Y.H., Bang O.Y. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28:1099–1106. doi: 10.1002/stem.430.
    1. Jiang J., Wang Y., Liu B., Chen X., Zhang S. Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke. Brain Dev. 2018;40:612–626. doi: 10.1016/j.braindev.2018.03.015.
    1. Abe K., Yamashita T., Takizawa S., Kuroda S., Kinouchi H., Kawahara N. Stem cell therapy for cerebral ischemia: From basic science to clinical applications. J. Cereb. Blood Flow Metab. 2012;32:1317–1331. doi: 10.1038/jcbfm.2011.187.
    1. Chen S.J., Chang C.M., Tsai S.K., Chang Y.L., Chou S.J., Huang S.S., Tai L.K., Chen Y.C., Ku H.H., Li H.Y., et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev. 2010;19:1757–1767. doi: 10.1089/scd.2009.0452.
    1. Chang D.J., Lee N., Park I.H., Choi C., Jeon I., Kwon J., Oh S.H., Shin D.A., Do J.T., Lee D.R., et al. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 2013;22:1427–1440. doi: 10.3727/096368912X657314.
    1. Ryu B., Sekine H., Homma J., Kobayashi T., Kawanata T., Shimizu T. Allogeneic adipose-derived mesenchymal stem cell sheet that produce neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J. Neurosurg. 2019;22:1–14. doi: 10.3171/2018.11.JNS182331.
    1. Mu J., Bakreen A., Juntunen M., Korhonen P., Oinonen E., Cui L., Myllyniemi M., Zhao S., Miettinen S., Jolkkonen J. Combined Adipose Tissue-Derived Mesenchymal Stem Cell Therapy and Rehabilitation in Experimental Stroke. Front. Neurol. 2019;10:235. doi: 10.3389/fneur.2019.00235.
    1. Study of Modified Stem Cells (SB623) in Patients with Chronic Motor Deficit from Ischemic Stroke (ACTIsSIMA) [(accessed on 3 March 2019)]; Available online: .
    1. Investigation of Neural Stem Cells in Ischemic Stroke (PISCES III) [(accessed on 3 March 2019)]; Available online: .
    1. Glass J.D., Boulis N.M., Johe K., Rutkove S.B., Federici T., Polak M., Kelly C., Feldman E.L. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: Results of a phase I trial in 12 patients. Stem Cells. 2012;30:1144–1151. doi: 10.1002/stem.1079.
    1. Osanai T., Houkin K., Uchiyama S., Minematsu K., Taguchi A., Terasaka S. Treatment evaluation of acute stroke for using in regenerative cell elements (TREASURE) trial: Rationale and design. Int. J. Stroke. 2018;13:444–448. doi: 10.1177/1747493017743057.
    1. Broderick J.P., Adeoye O., Elm J. Evolution of the modified Rankin scale and its use in future stroke trials. Stroke. 2017;48:2007–2012. doi: 10.1161/STROKEAHA.117.017866.
    1. Chen K.L., Chen C.T., Chou Y.T., Shih C.L., Koh C.L., Hsieh C.L. Is the long form of the Fugl-Meyer motor scale more responsive than the short form in patients with stroke? Arch. Phys. Med. Rehabil. 2014;95:941–949. doi: 10.1016/j.apmr.2014.01.014.
    1. Lyden P. Using the national institutes of health stroke scale: A cautionary tale. Stroke. 2017;48:513–519. doi: 10.1161/STROKEAHA.116.015434.
    1. Buzas R., Rogobete A.F., Popovici S.E., Mateescu T., Hoinoiu T., Sorop V.B., Bratu T., Ticlea M., Popoiu C.M., Sandesc D. Nuclear Transcription Factor Kappa B (NF-кB) and Molecular Damage Mechanisms in Acute Cardiovascular Diseases. A Review. J. Cardiovasc. Emerg. 2018;4:65–72. doi: 10.2478/jce-2018-0008.
    1. Xing R., De Wilde D., McCann G., Ridwan Y., Schrauwen J.T.C., van der Steen A.F.W., Gijsen F.J.H., Van der Heiden K. Contrast-enhanced micro-CT imaging in murine carotid arteries: A new protocol for computing wall shear stress. Biomed. Eng. Online. 2016;15:156. doi: 10.1186/s12938-016-0270-2.
    1. Cibis M., Potters W.V., Gijsen F.J., Marquering H., VanBavel E., van der Steen A.F., Nederveen A.J., Wentzel J.J. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: A comparison study in healthy carotid arteries. NMR Biomed. 2014;27:826–834. doi: 10.1002/nbm.3126.
    1. Zhou H., Meng L., Zhou W., Xin L., Xia X., Li S., Zheng H., Niu L. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque. Biomed. Eng. Online. 2017;16:92. doi: 10.1186/s12938-017-0386-z.
    1. Nyulas T., Marton E., Rus V.A., Rat N., Ratiu M., Benedek T., Benedek I. Morphological features and plaque composition in culprit atheromatous plaques of patients with acute coronary syndromes. J. Cardiovasc. Emerg. 2018;4:84–94. doi: 10.2478/jce-2018-0012.
    1. Cheng C., Tempel D., van Haperen R., van der Baan A., Grosveld F., Daemen M.J., Krams R., de Crom R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113:2744–2753. doi: 10.1161/CIRCULATIONAHA.105.590018.
    1. Masatsugu K., Itoh H., Chun T.H., Saito T., Yamashita J., Doi K., Inoue M., Sawada N., Fukunaga Y., Sakaguchi S., et al. Shear stress attenuates endothelin and endothelin-converting enzyme expression through oxidative stress. Regul. Pept. 2003;111:13–19. doi: 10.1016/S0167-0115(02)00219-7.
    1. Lind L., Andersson J., Larsson A., Sandhagen B. Shear stress in the common carotid artery is related to both intima-media thickness and echogenecity. Clin. Hemorheol. Microcirc. 2009;43:299–308.
    1. Zhang B., Gu J., Qian M., Niu L., Ghista D. Study of correlation between wall shear stress and elasticity in atherosclerotic carotid arteries. Biomed. Eng. Online. 2018;17:5. doi: 10.1186/s12938-017-0431-y.
    1. De Wilde D., Trachet B., De Meyer G.R., Segers P. Shear stress metrics and their relation to atherosclerosis: An in vivo follow-up study in atherosclerotic mice. Ann. Biomed. Eng. 2016;44:2327–2338. doi: 10.1007/s10439-015-1540-z.
    1. Jeong S.K., Lee J.Y., Rosenson R.S. Association between ischemic stroke and vascular shear stress in the carotid artery. J. Clin. Neurol. 2014;10:133–139. doi: 10.3988/jcn.2014.10.2.133.
    1. Seneviratne A.N., Cole J.E., Goddard M.E., Park I., Mohri Z., Sansom S., Udalova I., Krams R., Monaco C. Low shear stress induces M1 macrophage polarization in murine thin-cap atherosclerotic plaques. J. Mol. Cell. Cardiol. 2015;89:168–172. doi: 10.1016/j.yjmcc.2015.10.034.
    1. Oshida S., Mori F., Sasaki M., Sato Y., Kobayshi M., Yoshida K., Fujiwara S., Ogasawara K. Wall shear stress and T1 contrast ratio are associated with embolic signals during carotid exposure in endarterectomy. Stroke. 2018;49:2061–2066. doi: 10.1161/STROKEAHA.118.022322.
    1. Pedrigi R.M., Mehta V.V., Bovens S.M., Mohri Z., Poulsen C.B., Gsell W., Tremoleda J.L., Towhidi L., de Silva R., Petretto E., et al. Influence of shear stress magnitude and direction on atherosclerotic plaque composition. R. Soc. Open. Sci. 2016;3:16058. doi: 10.1098/rsos.160588.
    1. Roger V.L., Go A.S., Lloyd-Jones D.M., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., et al. Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation. 2012;125:e2–e220.
    1. Bartosh T.J., Ylöstalo J.H., Mohammadipoor A., Bazhanov N., Coble K., Claypool K., Lee R.H., Choi H. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiin¬flammatory properties. Proc. Natl. Acad. Sci. USA. 2010;107:13724–13729. doi: 10.1073/pnas.1008117107.
    1. Frith J.E., Thomson B., Genever P.G. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng. Part C Methods. 2010;16:735–749. doi: 10.1089/ten.tec.2009.0432.
    1. Sart S., Tsai A.C., Li Y., Ma T. Three-dimensional aggregates of mesenchymal stem cells: Cellular mechanisms, biological properties, and applications. Tissue Eng. Part B Rev. 2013;20:365–380. doi: 10.1089/ten.teb.2013.0537.
    1. Imitola J., Park K.I., Teng Y.D., Nisim S., Lachyankar M., Ourednik J., Mueller F.J., Yiou R., Atala A., Sidman R.L., et al. Stem cells: Cross–talk and developmental programs. Philos Trans. R Soc. Lond. B Biol. Sci. USA. 2004;359:823–837. doi: 10.1098/rstb.2004.1474.
    1. George P., Bliss T.M., Mehta S., Sun G., Steinberg G.K. Abstract T MP17: Electrically preconditioned neural stem cells improve stroke recovery. Stroke. 2015;46:ATMP17.
    1. Teng Y.D., Lavik E.B., Qu X., Park K.I., Ourednik J., Zurakowski D., Langer R., Snyder E.Y. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA. 2002;99:3024–3029. doi: 10.1073/pnas.052678899.
    1. Aref A., Horvath R., McColl J., Ramsden J.J. Optical monitoring of stem cell-substratum interactions. J. Biomed. Opt. 2009;14:010501. doi: 10.1117/1.3065541.
    1. Kirouac D.C., Zandstra P.W. The systematic production of cells for cell therapies. Cell Stem Cell. 2008;3:369–381. doi: 10.1016/j.stem.2008.09.001.
    1. Bracci R., Maccaroni E., Cascinu S. Transient sunitinib resistance in gastrointestinal stromal tumors. N. Engl. J. Med. 2013;368:2042–2043. doi: 10.1056/NEJMc1301237.
    1. Vijayavenkataraman S., Yan W.C., Lu W.F., Wang C.H., Fuh J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug. Deliv. Rev. 2018;132:296–332. doi: 10.1016/j.addr.2018.07.004.
    1. Mironov V., Kasyanov V., Markwald R.R. Nanotechnology in vascular tissue engineering: From nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol. 2008;26:338–344. doi: 10.1016/j.tibtech.2008.03.001.
    1. Derakhshanfar S., Mbeleck R., Xu K., Zhang X., Zhong W., Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018;3:144–156. doi: 10.1016/j.bioactmat.2017.11.008.
    1. Tricomi B.J., Dias A.D., Corr D.T. Stem cell bioprinting for applications in regenerative medicine. Ann. N. Y. Acad. Sci. 2016;1383:115–124. doi: 10.1111/nyas.13266.
    1. Ozawa T., Mickle D.A., Weisel R.D., Koyama N., Ozawa S., Li R.K. Optimal biomaterial for creation of autologous cardiac grafts. Circulation. 2002;106:176–182.
    1. Jin K., Mao X., Xie L., Galvan V., Lai B., Wang Y., Gorostiza O., Wang X., Greenberg D.A. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J. Cereb. Blood Flow Metab. 2010;30:534–544. doi: 10.1038/jcbfm.2009.219.
    1. Boisserand L.S., Kodama T., Papassin J., Auzely R., Moisan A., Rome C., Detante O. Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int. 2016;2016:6810562. doi: 10.1155/2016/6810562.
    1. Delcroix G.J.R., Schiller P.C., Benoit J.P., Montero-Menei C.N. Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials. 2010;31:2105–2120. doi: 10.1016/j.biomaterials.2009.11.084.
    1. Pakulska M.M., Ballios B.G., Shoichet M.S. Injectable hydrogels for central nervous system therapy. Biomed. Mater. 2012;7:024101. doi: 10.1088/1748-6041/7/2/024101.
    1. Wang Y., Cooke M.J., Morshead C.M., Shoichet M.S. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials. 2012;33:2681–2692. doi: 10.1016/j.biomaterials.2011.12.031.
    1. Emerich D.F., Silva E., Ali O., Mooney D., Bell W., Yu S.J., Kaneko Y., Borlongan C. Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplant. 2010;19:1063–1071. doi: 10.3727/096368910X498278.
    1. Perale G., Rossi F., Sundstrom E., Bacchiega S., Masi M., Forloni G., Veglianese P. Hydrogels in spinal cord injury repair strategies. ACS Chem. Neurosci. 2011;2:336–345. doi: 10.1021/cn200030w.
    1. Mdzinarishvili A., Sutariya V., Talasila P.K., Geldenhuys W.J., Sadana P. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv. Transl. Res. 2013;3:309–317. doi: 10.1007/s13346-012-0117-8.
    1. Kalladka D., Muir K.W. Brain repair: Cell therapy in stroke. Stem Cells Cloning. 2014;7:31–44.
    1. Bifari F., Pacelli L., Krampera M. Immunological properties of embryonic and adult stem cells. World J. Stem Cells. 2010;2:50–60. doi: 10.4252/wjsc.v2.i3.50.
    1. Szajer J., Ho-Shon K. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations—a review. Magn. Reson. Imaging. 2018;48:62–69. doi: 10.1016/j.mri.2017.12.005.
    1. Szilágyi S.M., Popovici M.M., Szilágyi L. Automatic Segmentation Techniques of the Coronary Artery Using CT Images in Acute Coronary Syndromes. J. Cardiovasc. Emerg. 2017;3:9–17. doi: 10.1515/jce-2017-0002.

Source: PubMed

3
Abonnere