MicroRNAs: new insights into chronic childhood diseases

Ahmed Omran, Dalia Elimam, Fei Yin, Ahmed Omran, Dalia Elimam, Fei Yin

Abstract

Chronic diseases are the major cause of morbidity and mortality worldwide and have shown increasing incidence rates among children in the last decades. Chronic illnesses in the pediatric population, even if well managed, affect social, psychological, and physical development and often limit education and active participation and increase the risk for health complications. The significant pediatric morbidity and mortality rates caused by chronic illnesses call for serious efforts toward better understanding of the pathogenesis of these disorders. Recent studies have shown the involvement of microRNAs (miRNAs) in various aspects of major pediatric chronic non-neoplastic diseases. This review focuses on the role of miRNAs in four major pediatric chronic diseases including bronchial asthma, diabetes mellitus, epilepsy and cystic fibrosis. We intend to emphasize the importance of miRNA-based research in combating these major disorders, as we believe this approach will result in novel therapies to aid securing normal development and to prevent disabilities in the pediatric population.

References

    1. Janse AJ, Uiterwaal CS, Gemke RJ, Kimpen JL, Sinnema G. A difference in perception of quality of life in chronically ill children was found between parents and pediatricians. Journal of Clinical Epidemiology. 2005;58(5):495–502.
    1. Omran A, Elimam D, Shalaby S, Peng J, Yin F. MicroRNAs: a light into the “Black Box” of neuropediatric diseases. Neuromolecular Medicine. 2012;14(4):244–261.
    1. Omran A, Elimam D, Webster K, Shehadeh L, Yin F. MicroRNAs: a new piece in the paediatric cardiovascular disease puzzle. Cardiology in the Young. 2013:1–14.
    1. Bossé Y, Paré PD, Seow CY. Airway wall remodeling in asthma: from the epithelial layer to the adventitia. Current Allergy and Asthma Reports. 2008;8(4):357–366.
    1. Vignola AM, Mirabella F, Costanzo G, et al. Airway remodeling in asthma. Chest. 2003;123(supplement 3):417S–422S.
    1. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. The Lancet. 2008;372(9643):1107–1119.
    1. Akinbami LJ, Moorman JE, Garbe PL, Sondik EJ. Status of childhood asthma in the United States, 1980–2007. Pediatrics. 2009;123(3):S131–S145.
    1. Kelley CF, Mannino DM, Homa DM, Savage-Brown A, Holguin F. Asthma phenotypes, risk factors, and measures of severity in a national sample of US children. Pediatrics. 2005;115(3):726–731.
    1. Tan Z, Randall G, Fan J, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. American Journal of Human Genetics. 2007;81(4):829–834.
    1. Su X-W, Yang Y, Lv M-L, et al. Association between single-nucleotide polymorphisms in pre-mirnas and the risk of asthma in a Chinese population. DNA and Cell Biology. 2011;30(11):919–923.
    1. Zhang YY, Zhong M, Zhang MY, Lv K. Expression and clinical significance of miR-155 in peripheral blood CD4+; T cells of patients with allergic asthma. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012;28(5):540–543.
    1. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. Journal of Immunology. 2009;182(8):4994–5002.
    1. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of T H2 cells and the development of allergic airways disease. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(44):18704–18709.
    1. Williams AE, Larner-Svensson H, Perry MM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS ONE. 2009;4(6, article e5889)
    1. Polikepahad S, Knight JM, Naghavi AO, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. Journal of Biological Chemistry. 2010;285(39):30139–30149.
    1. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–611.
    1. Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of RhoA in bronchial smooth muscle cells. American Journal of Respiratory and Critical Care Medicine. 2009;180(8):713–719.
    1. Kumar M, Mabalirajan U, Agrawal A, Ghosh B. Proinflammatory role of let-7 miRNAs in experimental asthma? Journal of Biological Chemistry. 2010;285(48):p. le20.
    1. Garbacki N, di Valentin E, Huynh-Thu VA, et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS ONE. 2011;6(1, article e16509)
    1. Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A, Monticelli S. MicroRNA-221-222 regulate the cell cycle in mast cells. Journal of Immunology. 2009;182(1):433–445.
    1. Mayoral RJ, Deho L, Rusca N, et al. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS ONE. 2011;6(10, article e26133)
    1. Walsh GM. Targeting eosinophils in asthma: current and future state of cytokine-and chemokine-directed monoclonal therapy. Expert Review of Clinical Immunology. 2010;6(5):701–704.
    1. Kim HY, Dekruyff RH, Umetsu DT. The many paths to asthma:phenotype shaped by innate and adaptive immunity. Nature Immunology. 2010;11(7):577–584.
    1. Schroeder JT, Bieneman AP, Chichester KL, Breslin L, Xiao H, Liu MC. Pulmonary allergic responses augment interleukin-13 secretion by circulating basophils yet suppress interferon-α from plasmacytoid dendritic cells. Clinical and Experimental Allergy. 2010;40(5):745–754.
    1. Liu X, Nelson A, Wang X, et al. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochemical and Biophysical Research Communications. 2009;380(1):177–182.
    1. Kumar M, Ahmad T, Sharma A, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. Journal of Allergy and Clinical Immunology. 2011;128(5):1077.e10–1085.e10.
    1. Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. Journal of Allergy and Clinical Immunology. 2011;128(1):160–167.
    1. Radzikinas K, Aven L, Jiang Z, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. Journal of Neuroscience. 2011;31(43):15407–15415.
    1. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology. 2008;8(3):183–192.
    1. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Reviews Immunology. 2008;8(3):193–204.
    1. Holgate ST. The epithelium takes centre stage in asthma and atopic dermatitis. Trends in Immunology. 2007;28(6):248–251.
    1. Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC. Epithelium: at the interface of innate and adaptive immune responses. Journal of Allergy and Clinical Immunology. 2007;120(6):1279–1284.
    1. Zhai Y, Zhong Z, Chen C-YA, et al. Coordinated changes in mRNA turnover, translation, and RNA processing bodies in bronchial epithelial cells following inflammatory stimulation. Molecular and Cellular Biology. 2008;28(24):7414–7426.
    1. Chiba Y, Misawa M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. Journal of Pharmacological Sciences. 2010;114(3):264–268.
    1. Sharma A, Kumar M, Ahmad T, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. Journal of Applied Physiology. 2012;113(3):459–464.
    1. Feng MJ, Shi F, Qiu C, Peng WK. MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. International Immunopharmacology. 2012;13(3):347–353.
    1. Schaafsma D, Gosens R, Zaagsma J, Halayko AJ, Meurs H. Rho kinase inhibitors: a novel therapeutical intervention in asthma? European Journal of Pharmacology. 2008;585(2-3):398–406.
    1. Kume H. RhoA/Rho-kinase as a therapeutic target in asthma. Current Medicinal Chemistry. 2008;15(27):2876–2885.
    1. Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G, EURODIAB Study Group Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. The Lancet. 2009;373(9680):2027–2033.
    1. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. The Lancet. 2011;378(9785):31–40.
    1. Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates foxa2 expression and intracellular signaling in pancreatic β-cell lines. Journal of Biological Chemistry. 2007;282(27):19575–19588.
    1. Keller DM, Clark EA, Goodman RH. Regulation of microRNA-375 by cAMP in pancreatic β-cells. Molecular Endocrinology. 2012;26(6):989–999.
    1. Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic α- and β-cell mass. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(14):5813–5818.
    1. Sun L-L, Jiang B-G, Li W-T, Zou J-J, Shi Y-Q, Liu Z-M. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Research and Clinical Practice. 2011;91(1):94–100.
    1. Zhao X, Mohan R, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (Map4k4) in pancreatic β cells. Journal of Biological Chemistry. 2012;287(37):31155–31164.
    1. Bolmeson C, Esguerra JLS, Salehi A, Speidel D, Eliasson L, Cilio CM. Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochemical and Biophysical Research Communications. 2011;404(1):16–22.
    1. Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N. High glucose suppresses human islet insulin biosynthesis by inducing mir-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS ONE. 2010;5(5, article e10843)
    1. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. Journal of Biological Chemistry. 2006;281(37):26932–26942.
    1. Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS Journal. 2011;278(7):1167–1174.
    1. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–230.
    1. Li Y, Xu X, Liang Y, et al. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. International Journal of Clinical and Experimental Pathology. 2010;3(3):254–264.
    1. Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (MCT1) Molecular and Cellular Biology. 2011;31(15):3182–3194.
    1. Wijesekara N, Zhang L-H, Kang MH, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes. 2012;61(3):653–658.
    1. Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes. 2010;59(4):978–986.
    1. Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–653.
    1. Zhu H, Shyh-Chang N, Segr AV, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147(1):81–94.
    1. Zhou L, He H, Mi JX, Li C, Lee B, Mi Q-S. MicroRNA genes: are they susceptibility candidates for human type 1 diabetes? Annals of the New York Academy of Sciences. 2008;1150:72–75.
    1. Hezova R, Slaby O, Faltejskova P, et al. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cellular Immunology. 2010;260(2):70–74.
    1. Roggli E, Gattesco S, Caille D, et al. Changes in microrna expression contribute to pancreatic β-cell dysfunction in prediabetic nod mice. Diabetes. 2012;61(7):1742–1751.
    1. Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes/Metabolism Research and Reviews. 2011;27(8):862–866.
    1. Bang-Berthelsen CH, Pedersen L, Fløyel T, Hagedorn PH, Gylvin T, Pociot F. Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics. 2011;12, article 97
    1. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007;56(12):2938–2945.
    1. Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO Journal. 2011;30(5):835–845.
    1. Kalis M, Bolmeson C, Esguerra JLS, et al. Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS ONE. 2011;6(12, article e29166)
    1. Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS ONE. 2008;3(9, article e3148)
    1. Johnson JD. Proteomic identification of carboxypeptidase E connects lipid-induced β-cell apoptosis and dysfunction in type 2 diabetes. Cell Cycle. 2009;8(1):38–42.
    1. Gwiazda KS, Yang T-LB, Lin Y, Johnson JD. Effects of palmitate on ER and cytosolic Ca2+ homeostasis in β-cells. American Journal of Physiology-Endocrinology and Metabolism. 2009;296(4):E690–E701.
    1. Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nature Cell Biology. 2011;13(4):434–448.
    1. Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Molecular and Cellular Biochemistry. 2011;351(1-2):197–205.
    1. Herrera BM, Lockstone HE, Taylor JM, et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Medical Genomics. 2009;2, article no. 54
    1. Fujishiro M, Gotoh Y, Katagiri H, et al. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Molecular Endocrinology. 2003;17(3):487–497.
    1. Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE. Tumor necrosis factor α-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Molecular Endocrinology. 2000;14(10):1557–1569.
    1. Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A Clinical Study. Acta Diabetologica. 2011;48(1):61–69.
    1. He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Molecular Endocrinology. 2007;21(11):2785–2794.
    1. Lovis P, Roggli E, Laybutt DR, et al. Alterations in MicroRNA expression contribute to fatty Acid-Induced pancreatic β-Cell dysfunction. Diabetes. 2008;57(10):2728–2736.
    1. Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS ONE. 2011;6(8, article e22839)
    1. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other MicroRNAs in type 2 diabetes. Circulation Research. 2010;107(6):810–817.
    1. Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(9):3432–3437.
    1. Kato M, Wang L, Putta S, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. Journal of Biological Chemistry. 2010;285(44):34004–34015.
    1. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney International. 2011;80(4):358–368.
    1. Kato M, Putta S, Wang M, et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biology. 2009;11(7):881–889.
    1. Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB Journal. 2008;22(12):4126–4135.
    1. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. Journal of the American Society of Nephrology. 2012;23(3):458–469.
    1. Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investigative Ophthalmology & Visual Science. 2011;52(7):4402–4409.
    1. Silva VAO, Polesskaya A, Sousa TA, et al. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Molecular Vision. 2011;17:2228–2240.
    1. Wu J-H, Gao Y, Ren A-J, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Research. 2012;47(4):195–201.
    1. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death and Differentiation. 2010;17(2):193–199.
    1. Suárez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circulation Research. 2009;104(4):442–454.
    1. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research. 2008;79(4):581–588.
    1. Xie S, Xie N, Li Y, et al. Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat. Molecular and Cellular Biochemistry. 2012;361(1-2):305–314.
    1. Caporali A, Meloni M, Völlenkle C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after Limb Ischemia. Circulation. 2011;123(3):282–291.
    1. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. Journal of Molecular and Cellular Cardiology. 2012;53(1):64–72.
    1. Chen B-Z, Yu S-L, Singh S, et al. Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biology International. 2011;35(1):29–37.
    1. Ruan Q, Wang T, Kameswaran V, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(29):12030–12035.
    1. Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nature Reviews Endocrinology. 2009;5(7):367–373.
    1. Zhou B, Li C, Qi W, et al. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia. 2012;55(7):2032–2043.
    1. Geerts A, Brouwer O, Stroink H, et al. Onset of intractability and its course over time: The Dutch Study of Epilepsy in Childhood. Epilepsia. 2012;53(4):741–751.
    1. Perry MS, Duchowny M. Surgical management of intractable childhood epilepsy: curative and palliative procedures. Seminars in Pediatric Neurology. 2011;18(3):195–202.
    1. Russ SA, Larson K, Halfon N. A national profile of childhood epilepsy and seizure disorder. Pediatrics. 2012;129(2):256–264.
    1. Tao J, Wu H, Lin Q, et al. Deletion of astroglial dicer causes non-cell autonomous neuronal dysfunction and degeneration. Journal of Neuroscience. 2011;31(22):8306–8319.
    1. McKiernan RC, Jimenez-Mateos EM, Bray I, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS ONE. 2012;7(5, article e35921)
    1. Hu K, Zhang C, Long L, et al. Expression profile of microRNAs in rat hippocampus following lithium-pilocarpine-induced status epilepticus. Neuroscience Letters. 2011;488(3):252–257.
    1. Risbud RM, Lee C, Porter BE. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus. Brain Research. 2011;1424:53–59.
    1. Peng J, Omran A, Ashhab MU, et al. Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. Journal of Molecular Neuroscience. 2013;50(2):291–297.
    1. Song Y-J, Tian X-B, Zhang S, et al. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Research. 2011;1387:134–140.
    1. Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience. 2010;31(6):1100–1107.
    1. Omran A, Peng J, Zhang C, et al. Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia. 2012;53(7):1215–1224.
    1. Ashhab MU, Omran A, Kong H, et al. Expressions of tumor necrosis factor-alpha and microrna-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. Journal of Molecular Neuroscience. 2013
    1. Kan AA, van Erp S, Derijck AAHA, et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cellular and Molecular Life Sciences. 2012;69(18):3127–3145.
    1. Brooks-Kayal A. Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia. 2011;52(1):13–20.
    1. Wu L, Peng J, Wei C, et al. Characterization, using comparative proteomics, of differentially expressed proteins in the hippocampus of the mesial temporal lobe of epileptic rats following treatment with valproate. Amino Acids. 2011;40(1):221–238.
    1. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell. 2006;124(1):191–205.
    1. Rajasethupathy P, Fiumara F, Sheridan R, et al. Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63(6):803–817.
    1. Pichardo-Casas I, Goff LA, Swerdel MR, et al. Expression profiling of synaptic microRNAs from the adult rat brain identifies regional differences and seizure-induced dynamic modulation. Brain Research. 2012;1436:20–33.
    1. Nudelman AS, Dirocco DP, Lambert TJ, et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20(4):492–498.
    1. Liu D-Z, Tian Y, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow and Metabolism. 2010;30(1):92–101.
    1. Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, et al. miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. American Journal of Pathology. 2011;179(5):2519–2532.
    1. Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine. 2012;18(7):1087–1094.
    1. Ratjen F, Döring G. Cystic fibrosis. The Lancet. 2003;361(9358):681–689.
    1. Dodge JA, Lewis PA, Stanton M, Wilsher J. Cystic fibrosis mortality and survival in the UK: 1947–2003. European Respiratory Journal. 2007;29(3):522–526.
    1. Hodson ME, Simmonds NJ, Warwick WJ, et al. An international/multicentre report on patients with cystic fibrosis (CF) over the age of 40 years. Journal of Cystic Fibrosis. 2008;7(6):537–542.
    1. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine. 2003;168(8):918–951.
    1. Xu W, Hui C, Yu SSB, Jing C, Chan HC. MicroRNAs and cystic fibrosis—an epigenetic perspective. Cell Biology International. 2011;35(5):463–466.
    1. Oglesby IK, Bray IM, Chotirmall SH, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. Journal of Immunology. 2010;184(4):1702–1709.
    1. Bazett M, Paun A, Haston CK. MicroRNA profiling of cystic fibrosis intestinal disease in mice. Molecular Genetics and Metabolism. 2011;103(1):38–43.
    1. Bhattacharyya S, Balakathiresan NS, Dalgard C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. Journal of Biological Chemistry. 2011;286(13):11604–11615.
    1. Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gerthoffer WT, Singer CA. MicroRNA expression in human airway smooth muscle cells: Role of miR-25 in regulation of airway smooth muscle phenotype. American Journal of Respiratory Cell and Molecular Biology. 2010;42(4):506–513.
    1. Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics. 2007;8, article 240
    1. Ramachandran S, Karp PH, Jiang P, et al. A microRNA network regulates expression and biosynthesis of wild-type and ΔF508 mutantcystic fibrosis transmembrane conductance regulator. Proceedings of the National Academy of Sciences of the United States of America, 2012;109(33):13362–13367.
    1. Gillen AE, Gosalia N, Leir S-H, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochemical Journal. 2011;438(1):25–32.
    1. Megiorni F, Cialfi S, Dominici C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS ONE. 2011;6(10, article e26601)
    1. Rao JR, Nelson D, Moore JE, et al. Non-coding small (micro) RNAs of Pseudomonas aeruginosa isolated from clinical isolates from adult patients with cystic fibrosis. British Journal of Biomedical Science. 2010;67(3):126–132.

Source: PubMed

3
Abonnere