Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness

Cintia Botelho Dias, Paul J Moughan, Lisa G Wood, Harjinder Singh, Manohar L Garg, Cintia Botelho Dias, Paul J Moughan, Lisa G Wood, Harjinder Singh, Manohar L Garg

Abstract

One of the limitations for ranking foods and meals for healthiness on the basis of the glycaemic index (GI) is that the GI is subject to manipulation by addition of fat. Postprandial lipemia, defined as a rise in circulating triglyceride containing lipoproteins following consumption of a meal, has been recognised as a risk factor for the development of cardiovascular disease and other chronic diseases. Many non-modifiable factors (pathological conditions, genetic background, age, sex and menopausal status) and life-style factors (physical activity, smoking, alcohol and medication use, dietary choices) may modulate postprandial lipemia. The structure and the composition of a food or a meal consumed also plays an important role in the rate of postprandial appearance and clearance of triglycerides in the blood. However, a major difficulty in grading foods, meals and diets according to their potential to elevate postprandial triglyceride levels has been the lack of a standardised marker that takes into consideration both the general characteristics of the food and the food's fat composition and quantity. The release rate of lipids from the food matrix during digestion also has an important role in determining the postprandial lipemic effects of a food product. This article reviews the factors that have been shown to influence postprandial lipemia with a view to develop a novel index for ranking foods according to their healthiness. This index should take into consideration not only the glycaemic but also lipemic responses.

Keywords: Lipemic load; Postprandial lipemia; Triglyceridemia.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Summary of the pathophysiological effects of postprandial hypertriglyceridemia. ICAM-1, Intercellular Adhesion Molecule 1; IL-6, interleukin-6; IL-8, interleukin-8; NF-κB, nuclear factor κB; ROS, reactive oxygen species; TLR4, toll like receptor 4; TNF-α, tumour necrosis factor-α

References

    1. Kannel WB, Vasan RS. Triglycerides as vascular risk factors: new epidemiologic insights for current opinion in cardiology. Curr Opin Cardiol. 2009;24:345–350. doi: 10.1097/HCO.0b013e32832c1284.
    1. Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012;220:22–33. doi: 10.1016/j.atherosclerosis.2011.08.012.
    1. Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology. 2003;144:5159–5165. doi: 10.1210/en.2003-0870.
    1. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40:185–194. doi: 10.1002/hep.20283.
    1. Laine PS, Schwartz EA, Wang Y, Zhang W-Y, Karnik SK, Musi N, Reaven PD. Palmitic acid induces IP-10 expression in human macrophages via NF-κB activation. Biochem Biophys Res Commun. 2007;358:150–155. doi: 10.1016/j.bbrc.2007.04.092.
    1. Aljada A, Mohanty P, Ghanim H, Abdo T, Tripathy D, Chaudhuri A, Dandona P. Increase in intranuclear nuclear factor κB and decrease in inhibitor κB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am J Clin Nutr. 2004;79:682–690.
    1. Patel C, Ghanim H, Ravishankar S, Sia CL, Viswanathan P, Mohanty P, Dandona P. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J Clin Endocrinol Metab. 2007;92:4476–4479. doi: 10.1210/jc.2007-0778.
    1. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of Cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem. 2001;276:16683–16689. doi: 10.1074/jbc.M011695200.
    1. Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, Lee WH, Fitzgerald KA, Hwang DH. Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 Dimerized with toll-like receptor 6 or 1. J Biol Chem. 2004;279:16971–16979. doi: 10.1074/jbc.M312990200.
    1. Zhao L, Kwon M-J, Huang S, Lee JY, Fukase K, Inohara N, Hwang DH. Differential modulation of nods signaling pathways by fatty acids in human colonic epithelial HCT116 cells. J Biol Chem. 2007;282:11618–11628. doi: 10.1074/jbc.M608644200.
    1. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Invest. 2006;116:3015–3025. doi: 10.1172/JCI28898.
    1. Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P. Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr. 2002;75:767–772.
    1. Gopaul NK, Zacharowski K, Halliwell B, Änggård EE. Evaluation of the postprandial effects of a fast-food meal on human plasma F2-isoprostane levels. Free Radicals Biol Med. 2000;28:806–814. doi: 10.1016/S0891-5849(00)00167-2.
    1. Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79:350–354. doi: 10.1016/S0002-9149(96)00760-6.
    1. Patsch JR, Miesenböck G, Hopferwieser T, Mühlberger V, Knapp E, Dunn JK, Gotto AM, Patsch W. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler, Thromb. Vasc Biol. 1992;12:1336–1345. doi: 10.1161/01.ATV.12.11.1336.
    1. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, Hawn TR, Raines EW, Schwartz MW. Toll-like Receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res. 2007;100:1589–1596. doi: 10.1161/CIRCRESAHA.106.142851.
    1. van Oostrom AJHHM, Sijmonsma TP, Verseyden C, Jansen EHJM, de Koning EJP, Rabelink TJ, Castro Cabezas M. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res. 2003;44:576–583. doi: 10.1194/jlr.M200419-JLR200.
    1. Marchesi S, Lupattelli G, Schillaci G, Pirro M, Siepi D, Roscini AR, Pasqualini L, Mannarino E. Impaired flow-mediated vasoactivity during post-prandial phase in young healthy men. Atherosclerosis. 2000;153:397–402. doi: 10.1016/S0021-9150(00)00415-9.
    1. Nikkila M, Solakivi T, Lehtimaki T, Koivula T, Laippala P, Aström B. Postprandial plasma lipoprotein changes in relation to apolipoprotein E phenotypes and low density lipoprotein size in men with and without coronary artery disease. Atherosclerosis. 1994;106:149–157. doi: 10.1016/0021-9150(94)90120-1.
    1. Pirillo A, Norata GD, Catapano AL. Postprandial lipemia as a cardiometabolic risk factor. Curr Med Res Opin. 2014;30:1489–1503. doi: 10.1185/03007995.2014.909394.
    1. Carstensen M, Thomsen C, Gotzsche O, Holst JJ, Schrezenmeir J, Hermansen K. Differential postprandial lipoprotein responses in type 2 diabetic men with and without clinical evidence of a former myocardial infarction. Rev Diabet Stud. 2004;1:175–184. doi: 10.1900/RDS.2004.1.175.
    1. Kovar J, Havel RJ. Sources and properties of triglyceride-rich lipoproteins containing apoB-48 and apoB-100 in postprandial blood plasma of patients with primary combined hyperlipidemia. J Lipid Res. 2002;43:1026–1034. doi: 10.1194/jlr.M100435-JLR200.
    1. Nakajima K, Nakano T, Tokita Y, Nagamine T, Inazu A, Kobayashi J, Mabuchi H, Stanhope KL, Havel PJ, Okazaki M, et al. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta. 2011;412:1306–1318. doi: 10.1016/j.cca.2011.04.018.
    1. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr. 2007;98:458–473. doi: 10.1017/S000711450774268X.
    1. Keogh JB, Wooster TJ, Golding M, Day L, Otto B, Clifton PM. Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans. J Nutr. 2011;141:809–815. doi: 10.3945/jn.110.131110.
    1. O'Reilly EM, Holub BJ, Laidlaw M, Garrioch C, Wlodek MG. Development of a standardized clinical protocol for ranking foods and meals based on postprandial triglyceride responses: the Lipemic index. ISRN Vasc Med. 2011;2011:1–6. doi: 10.5402/2011/936974.
    1. Vors C, Pineau G, Gabert L, Drai J, Louche-Pélissier C, Defoort C, Lairon D, Désage M, Danthine S, Lambert-Porcheron S, et al. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. Am J Clin Nutr. 2013;97:23–36. doi: 10.3945/ajcn.112.043976.
    1. Cohen JC, Noakes TD, Benade AJ. Serum triglyceride responses to fatty meals: effects of meal fat content. Am J Clin Nutr. 1988;47:825–827.
    1. Maffeis C, Surano MG, Cordioli S, Gasperotti S, Corradi M, Pinelli L. A high-fat vs. a moderate-fat meal in obese boys: nutrient balance, appetite, and gastrointestinal hormone changes. Obesity. 2010;18:449–455. doi: 10.1038/oby.2009.271.
    1. Vors C, Pineau G, Drai J, Meugnier E, Pesenti S, Laville M, Laugerette F, Malpuech-Brugère C, Vidal H, Michalski MC. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab. 2015;100:3427–3435. doi: 10.1210/jc.2015-2518.
    1. Dubois C, Beaumier G, Juhel C, Armand M, Portugal H, Pauli AM, Borel P, Latgé C, Lairon D. Effects of graded amounts (0-50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr. 1998;67:31–38.
    1. Bonham MP, Linderborg KM, Dordevic A, Larsen AE, Nguo K, Weir JM, Gran P, Luotonen MK, Meikle PJ, Cameron-Smith D, et al. Lipidomic profiling of Chylomicron Triacylglycerols in response to high fat meals. Lipids. 2013;48:39–50. doi: 10.1007/s11745-012-3735-5.
    1. Burdge GC, Powell J, Calder PC. Lack of effect of meal fatty acid composition on postprandial lipid, glucose and insulin responses in men and women aged 50-65 years consuming their habitual diets. BJN. 2006;96:489–500.
    1. Dias CB, Wood LG, Phang M, Garg ML. Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids. Lipids. 2015;50:339–347. doi: 10.1007/s11745-015-4003-2.
    1. Jackson KG, Wolstencroft EJ, Bateman PA, Yaqoob P, Williams CM. Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin sensitivity and lipoprotein regulation? Br J Nutr. 2005;93:693–700. doi: 10.1079/BJN20051410.
    1. Masson CJ, Mensink RP. Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial activity in overweight men. J Nutr. 2011;141:816–821. doi: 10.3945/jn.110.136432.
    1. Mekki N, Charbonnier M, Borel P, Leonardi J, Juhel C, Portugal H, Lairon D. Butter differs from olive oil and sunflower oil in its effects on postprandial Lipemia and Triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr. 2002;132:3642–3649.
    1. Overgaard J, Porsgaard T, Guo Z, Lauritzen L, Mu H. Postprandial lipid responses of butter blend containing fish oil in a single-meal study in humans. Mol Nutr Food Res. 2008;52:1140–1146. doi: 10.1002/mnfr.200700484.
    1. Peairs AD, Rankin JW, Lee YW. Effects of acute ingestion of different fats on oxidative stress and inflammation in overweight and obese adults. Nutr J. 2011;10
    1. Svelander C, Gabrielsson BG, Almgren A, Gottfries J, Olsson J, Undeland I, Sandberg AS. Postprandial lipid and insulin responses among healthy, overweight men to mixed meals served with baked herring, pickled herring or baked, minced beef. Eur J Nutr. 2015;54:945-58.
    1. Svensson J, Rosenquist A, Ohlsson L. Postprandial lipid responses to an alpha-linolenic acid-rich oil, olive oil and butter in women: a randomized crossover trial. Lipids Health Dis. 2011;10
    1. Tholstrup T, Sandström B, Bysted A, Hølmer G. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men. Am J Clin Nutr. 2001;73:198–208.
    1. Perez-Martinez P, Ordovas JM, Garcia-Rios A, Delgado-Lista J, Delgado-Casado N, Cruz-Teno C, Camargo A, Yubero-Serrano EM, Rodriguez F, Perez-Jimenez F, et al. Consumption of diets with different type of fat influences triacylglycerols-rich lipoproteins particle number and size during the postprandial state. Nutr Metab Cardiovasc Dis. 2011;21:39–45. doi: 10.1016/j.numecd.2009.07.008.
    1. Tulk HMF, Robinson LE. Modifying the n-6/n-3 polyunsaturated fatty acid ratio of a high–saturated fat challenge does not acutely attenuate postprandial changes in inflammatory markers in men with metabolic syndrome. Metab Clin Exp. 2009;58:1709–1716. doi: 10.1016/j.metabol.2009.05.031.
    1. Bergeron N, Havel RJ. Influence of diets rich in saturated and Omega-6 polyunsaturated fatty acids on the postprandial responses of Apolipoproteins B-48, B-100, E, and lipids in triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol. 1995;15:2111–2121. doi: 10.1161/01.ATV.15.12.2111.
    1. Hall WL, Fiuza Brito M, Huang J, Wood LV, Filippou A, Sanders TAB, Berry SEE. An Interesterified palm Olein test meal decreases early-phase postprandial Lipemia compared to palm Olein: a randomized controlled trial. Lipids. 2014;49:895–904. doi: 10.1007/s11745-014-3936-1.
    1. Sanders TA, Berry SE, Miller GJ. Influence of triacylglycerol structure on the postprandial response of factor VII to stearic acid–rich fats. Am J Clin Nutr. 2003;77:777–782.
    1. Yli-Jokipii K, Kallio H, Schwab U, Mykkänen H, Kurvinen J-P, Savolainen MJ, Tahvonen R. Effects of palm oil and transesterified palm oil on chylomicron and VLDL triacylglycerol structures and postprandial lipid response. J Lipid Res. 2001;42:1618–1625.
    1. Yli-Jokipii KM, Schwab US, Tahvonen RL, Xu X, Mu H, Kallio HPT. Positional distribution of decanoic acid: effect on chylomicron and VLDL TAG structures and postprandial lipemia. Lipids. 2004;39:373–381. doi: 10.1007/s11745-004-1241-3.
    1. Yli-Jokipii KM, Schwab US, Tahvonen RL, Kurvinen J-P, Mykkänen HM, Kallio HPT. Chylomicron and VLDL TAG structures and postprandial lipid response induced by lard and modified lard. Lipids. 2003;38:693–703. doi: 10.1007/s11745-003-1117-6.
    1. Weintraub MS, Zechner R, Brown A, Eisenberg S, Breslow JL. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J Clin Invest. 1988;82:1884–1893. doi: 10.1172/JCI113806.
    1. Miyoshi T, Noda Y, Ohno Y, Sugiyama H, Oe H, Nakamura K, Kohno K, Ito H. Omega-3 fatty acids improve postprandial lipemia and associated endothelial dysfunction in healthy individuals - a randomized cross-over trial. Biomed Pharmacother. 2014;68:1071–1077. doi: 10.1016/j.biopha.2014.10.008.
    1. Chan DC, Pang J, Barrett PHR, Sullivan DR, Burnett JR, FMv B, Watts GF. ω-3 fatty acid ethyl esters diminish postprandial Lipemia in familial hypercholesterolemia. J Clin Endocrinol Metab. 2016;0:jc.2016–jc.2217.
    1. Cohen JC, Berger GM. Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res. 1990;31:597–602.
    1. Chong MF-F, Fielding BA, Frayn KN. Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr. 2007;85:1511–1520.
    1. Pal S, Ellis V, Ho S. Acute effects of whey protein isolate on cardiovascular risk factors in overweight, post-menopausal women. Atherosclerosis. 2010;212:339–344. doi: 10.1016/j.atherosclerosis.2010.05.032.
    1. Westphal S, Taneva E, Kästner S, Martens-Lobenhoffer J, Bode-Böger S, Kropf S, Dierkes J, Luley C. Endothelial dysfunction induced by postprandial lipemia is neutralized by addition of proteins to the fatty meal. Atherosclerosis. 2006;185:313–319. doi: 10.1016/j.atherosclerosis.2005.06.004.
    1. Mariotti F, Valette M, Lopez C, Fouillet H, Famelart M-H, Mathé V, Airinei G, Benamouzig R, Gaudichon C, Tomé D, et al. Casein compared with whey proteins affects the Organization of Dietary fat during digestion and attenuates the postprandial triglyceride response to a mixed high-fat meal in healthy, overweight men. J Nutr. 2015;145:2657–2664. doi: 10.3945/jn.115.216812.
    1. Holmer-Jensen J, Mortensen LS, Astrup A, de Vrese M, Holst JJ, Thomsen C, Hermansen K. Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects. Nutr Res. 2013;33:34–40. doi: 10.1016/j.nutres.2012.11.004.
    1. Kondo S, Xiao J-z, Takahashi N, Miyaji K, Iwatsuki K, Kokubo S. Suppressive effects of dietary fiber in yogurt on the postprandial serum lipid levels in healthy adult male volunteers. Biosci Biotechnol Biochem. 2004;68:1135–1138. doi: 10.1271/bbb.68.1135.
    1. McDougall GJ, Kulkarni NN, Stewart D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009;115:193–199. doi: 10.1016/j.foodchem.2008.11.093.
    1. Burton-Freeman B, Linares A, Hyson D, Kappagoda T. Strawberry modulates LDL oxidation and postprandial Lipemia in response to high-fat meal in overweight Hyperlipidemic men and women. J Am Coll Nutr. 2010;29:46–54. doi: 10.1080/07315724.2010.10719816.
    1. Naissides M, Mamo JCL, James AP, Pal S. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis. 2004;177:401–408. doi: 10.1016/j.atherosclerosis.2004.07.025.
    1. Ono-Moore KD, Snodgrass RG, Huang S, Singh S, Freytag TL, Burnett DJ, Bonnel EL, Woodhouse LR, Zunino SJ, Peerson JM, et al. Postprandial inflammatory responses and free fatty acids in plasma of adults who consumed a moderately high-fat breakfast with and without blueberry powder in a randomized placebo-controlled trial. J Nutr. 2016;146:1411–1419. doi: 10.3945/jn.115.223909.
    1. Berry SEE, Tydeman EA, Lewis HB, Phalora R, Rosborough J, Picout DR, Ellis PR. Manipulation of lipid bioaccessibility of almond seeds influences postprandial lipemia in healthy human subjects. Am J Clin Nutr. 2008;88:922–929.
    1. Berryman CE, Grieger JA, West SG, Chen C-YO, Blumberg JB, Rothblat GH, Sankaranarayanan S, Kris-Etherton PM. Acute consumption of walnuts and walnut components differentially affect postprandial Lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia. J Nutr. 2013;143:788–794. doi: 10.3945/jn.112.170993.
    1. Clemente G, Mancini M, Nazzaro F, Lasorella G, Rivieccio A, Palumbo AM, Rivellese AA, Ferrara L, Giacco R. Effects of different dairy products on postprandial lipemia. Nutr Metab Cardiovasc Dis. 2003;13:377–383. doi: 10.1016/S0939-4753(03)80007-8.
    1. Michalski M-C. Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipemia. Eur J Lipid Sci Technol. 2009;111:413–431. doi: 10.1002/ejlt.200800254.
    1. Berton A, Rouvellac S, Robert B, Rousseau F, Lopez C, Crenon I. Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: native versus homogenized milk fat globules. Food Hydrocoll. 2012;29:123–134. doi: 10.1016/j.foodhyd.2012.02.016.
    1. Singh H, Gallier S. Nature's complex emulsion: the fat globules of milk. Food Hydrocoll. 2017;68:81–89. doi: 10.1016/j.foodhyd.2016.10.011.
    1. Tan KWJ, Sun LJ, Goh KKT, Henry CJ: Lipid droplet size and emulsification on postprandial glycemia, insulinemia and lipidemia. Food Funct. 2016.
    1. Maraki MI, Sidossis LS. The latest on the effect of prior exercise on postprandial lipaemia. Sports Med. 2013;43:463–481. doi: 10.1007/s40279-013-0046-9.
    1. Kolovou GD, Anagnostopoulou KK, Daskalopoulou SS, Mikhailidis DP, Cokkinos DV. Clinical relevance of postprandial Lipaemia. Curr Med Chem. 2005;12:1931–1945. doi: 10.2174/0929867054546609.
    1. Graham TE. Exercise, postprandial triacylglyceridemia, and cardiovascular disease risk. Can J Appl Physiol. 2004;29:782–799. doi: 10.1139/h04-051.
    1. Petitt DS, Cureton KJ. Effects of prior exercise on postprandial lipemia: a quantitative review. Metabolism. 2003;52:418–424. doi: 10.1053/meta.2003.50071.
    1. Petitt DS, Arngrimsson SA, Cureton KJ. Effect of resistance exercise on postprandial lipemia. J Appl Physiol. 2003;94:694–700. doi: 10.1152/japplphysiol.00377.2002.
    1. Pfeiffer M, Ludwig T, Wenk C, Colombani PC. The influence of walking performed immediately before meals with moderate fat content on postprandial lipemia. Lipids Health Dis. 2005;4:24. doi: 10.1186/1476-511X-4-24.
    1. Shannon KA, Shannon RM, Clore JN, Gennings C, Warren BJ, Potteiger JA. Resistance exercise and postprandial lipemia: the dose effect of differing volumes of acute resistance exercise bouts. Metabolism. 2005;54:756–763. doi: 10.1016/j.metabol.2005.01.017.
    1. Gill JMR, Hardman AE. Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets (review) J Nutr Biochem. 2003;14:122–132. doi: 10.1016/S0955-2863(02)00275-9.
    1. Malkova D, Hardman AE, Bowness RJ, Macdonald IA. The reduction in postprandial lipemia after exercise is independent of the relative contributions of fat and carbohydrate to energy metabolism during exercise. Metabolism. 1999;48:245–251. doi: 10.1016/S0026-0495(99)90042-2.
    1. Heim DL, Holcomb CA, Loughin TM. Exercise mitigates the association of abdominal obesity with high-density lipoprotein cholesterol in premenopausal women: results from the third National Health and nutrition examination survey. J Am Diet Assoc. 2000;100:1347–1353. doi: 10.1016/S0002-8223(00)00379-5.
    1. Mero N, Syvänne M, Eliasson B, Smith U, Taskinen M-R. Postprandial elevation of ApoB-48-containing triglyceride-rich particles and Retinyl esters in Normolipemic males who smoke. Arterioscler Thromb Vasc Biol. 1997;17:2096–2102. doi: 10.1161/01.ATV.17.10.2096.
    1. Eliasson B, Mero N, Taskinen M-R, Smith U. The insulin resistance syndrome and postprandial lipid intolerance in smokers. Atherosclerosis. 1997;129:79–88. doi: 10.1016/S0021-9150(96)06028-5.
    1. Muntwyler J, Schmid H, Drexel H, Vonderschmitt DJ, Patsch JR, Amann FW. Regression of postprandial lipemia after smoking cessation. J Am Coll Cardiol. 1996;27:412. doi: 10.1016/S0735-1097(96)82586-1.
    1. Reitsma JB, Castro CM, de Bruin TW, Erkelens DW. Relationship between improved post-prandial lipemia and low density lipoprotein metabolism during treatment with tetrahydrolipstatin, a pancreatic lipase inhibitor. Metabolism. 1994;43:293–298. doi: 10.1016/0026-0495(94)90095-7.
    1. Boquist S, Karpe F, Danell-Toverud K, Hamsten A. Effect of atorvastatin on post-prandial plasma lipoproteins in post-infarction patients with combined hyperlipidemia. Atherosclerosis. 2002;162:163–170. doi: 10.1016/S0021-9150(01)00689-X.
    1. Sposito AC, Santos RD, Amâncio RF, Ramires JAF, John Chapman M, Maranhão RC. Atorvastatin enhances the plasma clearance of chylomicron-like emulsions in subjects with atherogenic dyslipidemia: relevance to the in vivo metabolism of triglyceride-rich lipoproteins. Atherosclerosis. 2003;166:311–321. doi: 10.1016/S0021-9150(02)00334-9.
    1. Parhofer KG, Laubach E, Barrett PHR. Effect of atorvastatin on postprandial lipoprotein metabolism in hypertriglyceridemic patients. J Lipid Res. 2003;44:1192–1198. doi: 10.1194/jlr.M300011-JLR200.
    1. Chan DC, Watts GF, Barrett PHR, Martins IJ, James AP, Mamo JCL, Mori TA, Redgrave TG. Effect of atorvastatin on chylomicron remnant metabolism in visceral obesity: a study employing a new stable isotope breath test. J Lipid Res. 2002;43:706–712.
    1. Drexel H. Statins, fibrates, nicotinic acid, cholesterol absorption inhibitors, anion-exchange resins, omega-3 fatty acids: which drugs for which patients? Fundam Clin Pharmacol. 2009;23:687-92.
    1. Syvanne M, Vuorinen-Markkola H, Hilden H, Taskinen MR. Gemfibrozil reduces postprandial lipemia in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1993;13:286–295. doi: 10.1161/01.ATV.13.2.286.
    1. Evans M, Anderson RA, Graham J, Ellis GR, Morris K, Davies S, Jackson SK, Lewis MJ, Frenneaux MP, Rees A. Ciprofibrate therapy improves endothelial function and reduces postprandial Lipemia and oxidative stress in type 2 diabetes mellitus. Circulation. 2000;101:1773–1779. doi: 10.1161/01.CIR.101.15.1773.
    1. Ohno Y, Miyoshi T, Noda Y, Oe H, Toh N, Nakamura K, Kohno K, Morita H, Ito H. Bezafibrate improves postprandial hypertriglyceridemia and associated endothelial dysfunction in patients with metabolic syndrome: a randomized crossover study. Cardiovasc Diabetol. 2014;13:71. doi: 10.1186/1475-2840-13-71.
    1. Reyes-Soffer G, Ngai CI, Lovato L, Karmally W, Ramakrishnan R, Holleran S, Ginsberg HN. Effect of combination therapy with Fenofibrate and Simvastatin on postprandial Lipemia in the ACCORD lipid trial. Diabetes Care. 2013;36:422–428. doi: 10.2337/dc11-2556.
    1. Hauner H. Current pharmacological approaches to the treatment of obesity. Int J Obes Relat Metab Disord. 2001;25:S102–S106. doi: 10.1038/sj.ijo.0801711.
    1. Reasner CA. Promising new approaches. Diabetes Obes Metab. 1999;1:S41–S48. doi: 10.1046/j.1463-1326.1999.0010s1041.x.
    1. Nakamura T, Funahashi T, Yamashita S, Nishida M, Nishida Y, Takahashi M, Hotta K, Kuriyama H, Kihara S, Ohuchi N, et al. Thiazolidinedione derivative improves fat distribution and multiple risk factors in subjects with visceral fat accumulation—double-blind placebo-controlled trial. Diabetes Res Clin Pract. 2001;54:181–190. doi: 10.1016/S0168-8227(01)00319-9.
    1. Zanella MT, Kohlmann O, Ribeiro AB. Treatment of obesity hypertension and diabetes syndrome. Hypertension. 2001;38:705–708. doi: 10.1161/01.HYP.38.3.705.
    1. Glueck CJ, Fontaine RN, Wang P, Subbiah MTR, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy TM, Lang JE, et al. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism. 2001;50:856–861. doi: 10.1053/meta.2001.24192.
    1. Peluso I, Manafikhi H, Reggi R, Palmery M. Effects of red wine on postprandial stress: potential implication in non-alcoholic fatty liver disease development. Eur J Nutr. 2015;54:497–507. doi: 10.1007/s00394-015-0877-2.
    1. Zemánková K, Makoveichuk E, Vlasáková Z, Olivecrona G, Kovář J. Acute alcohol consumption downregulates lipoprotein lipase activity in vivo. Metabolism. 2015;64:1592–1596. doi: 10.1016/j.metabol.2015.08.016.
    1. Van de Wiel A. The effect of alcohol on postprandial and fasting triglycerides. Int J Vasc Med. 2012;2012
    1. Harley Hartung G, Lawrence SJ, Reeves RS, Foreyt JP. Effect of alcohol and exercise on postprandial lipemia and triglyceride clearance in men. Atherosclerosis. 1993;100:33–40. doi: 10.1016/0021-9150(93)90065-3.
    1. El-Sayed MS, Al-Bayatti MF. Effects of alcohol ingestion following exercise on postprandial lipemia. Alcohol. 2001;23:15–21. doi: 10.1016/S0741-8329(00)00119-1.
    1. Stampfer MJ, Colditz GA, Willett WC, Speizer FE, Hennekens CH: 1988. A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. N Engl J Med 1988; 319:267-273.
    1. Fraser GE, Upsdell M. Alcohol and other discriminants between cases of sudden death and myocardial infarction. Am J Epidemiol. 1981;114:462–476. doi: 10.1093/oxfordjournals.aje.a113212.
    1. Klatsky AL. Epidemiology of coronary heart disease—influence of alcohol. Alcohol Clin Exp Res. 1994;18:88–96. doi: 10.1111/j.1530-0277.1994.tb00886.x.
    1. Wannamethee SG, Shaper AG. Type of alcoholic drink and risk of major coronary heart disease events and all-cause mortality. Am J Public Health. 1999;89:685–690. doi: 10.2105/AJPH.89.5.685.
    1. Gaziano JM, Buring JE, Breslow JL, Goldhaber SZ, Rosner B, VanDenburgh M, Willett W, Hennekens CH. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med. 1993;329:1829–1834. doi: 10.1056/NEJM199312163292501.
    1. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ. 1999;319:1523–1528. doi: 10.1136/bmj.319.7224.1523.
    1. Perez-Martinez P, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Update on genetics of postprandial lipemia. Atheroscler Suppl. 2010;11:39–43. doi: 10.1016/j.atherosclerosissup.2010.03.002.
    1. Kolovou GD, Anagnostopoulou KK, Damaskos DS, Mihas C, Mavrogeni S, Hatzigeorgiou G, Theodoridis T, Mikhailidis DP, Cokkinos DV. Gender influence on postprandial Lipemia in Heterozygotes for familial hypercholesterolemia. Ann Clin Lab Sci. 2007;37:335–342.
    1. Koutsari C, Zagana A, Tzoras I, Sidossis LS, Matalas AL. Gender influence on plasma triacylglycerol response to meals with different monounsaturated and saturated fatty acid content. Eur J Clin Nutr. 2004;58:295–502. doi: 10.1038/sj.ejcn.1601836.
    1. Cohn JS, McNamara JR, Cohn SD, Ordovas JM, Schaefer EJ. Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res. 1988;29:469–479.
    1. Redard CL, Davis PA, Schneeman BO. Dietary fiber and gender: effect on postprandial lipemia. Am J Clin Nutr. 1990;52:837–845.
    1. Sanders TA, Filippou A, Berry SE, Baumgartner S, Mensink RP. Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. Am J Clin Nutr. 2011;94:1433–1441. doi: 10.3945/ajcn.111.017459.
    1. Couillard C, Bergeron N, Prud’homme D, Bergeron J, Tremblay A, Bouchard C, Mauriège P, Després J-P. Gender difference in postprandial Lipemia: importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol. 1999;19:2448–2455. doi: 10.1161/01.ATV.19.10.2448.
    1. Knuth ND, Horowitz JF. The elevation of ingested lipids within plasma Chylomicrons is prolonged in men compared with women. J Nutr. 2006;136:1498–1503.
    1. Bjornson E, Adiels M, Taskinen MR, Boren J. Kinetics of plasma triglycerides in abdominal obesity. Curr Opin Lipidol. 2017;28:11–18.
    1. Issa JS, Diament J, Forti N. Postprandial Lipemia: influence of aging. Arq Bras Cardiol. 2005;85:15–19. doi: 10.1590/S0066-782X2005001400004.
    1. Nabeno Y, Fukuchi Y, Matsutani Y, Naito M. Influence of ageing and menopause on postprandial lipoprotein responses in healthy adult women. J Atheroscler Thromb. 2007;14:142–150. doi: 10.5551/jat.14.142.
    1. Jackson KG, Abraham EC, Smith AM, Murray P, O’Malley B, Williams CM, Minihane AM. Impact of age and menopausal status on the postprandial triacylglycerol response in healthy women. Atherosclerosis. 2010;208:246–252. doi: 10.1016/j.atherosclerosis.2009.06.030.
    1. Rahman S, Zaman GS, Rahman J. Age-based study of postprandial Lipemia in Hypertensives and cigarette smokers. Am J Biomed Sci. 2012:26–35.
    1. Krasinski SD, Cohn JS, Schaefer EJ, Russell RM. Postprandial plasma retinyl ester response is greater in older subjects compared with younger subjects. Evidence for delayed plasma clearance of intestinal lipoproteins. J Clin Invest. 1990;85:883–892. doi: 10.1172/JCI114515.
    1. Zaman GS, Rahman S, Rahman J. Postprandial lipemia in pre- and postmenopausal women. J Nat Sci Biol Med. 2012;3:65–70. doi: 10.4103/0976-9668.95961.
    1. van Beek AP, de Ruijter-Heijstek FC, Erkelens DW, de Bruin TWA. Menopause is associated with reduced protection from postprandial Lipemia. Arterioscler Thromb Vasc Biol. 1999;19:2737–2741. doi: 10.1161/01.ATV.19.11.2737.
    1. Miccoli R, Bianchi C. Penno G. Del Prato S: Insulin resistance and lipid disorders. 2008;3:651–664.
    1. Lewis GF, O'Meara NM, Soltys PA, Blackman JD, Iverius PH, Pugh WL, Getz GS, Polonsky KS. Fasting Hypertriglyceridemia in non insulin-dependent diabetes mellitus is an important predictor of postprandial lipid and lipoprotein abnormalities. J Clin Endocrinol Metab. 1991;72:934–944. doi: 10.1210/jcem-72-4-934.
    1. Chen YD, Swami S, Skowronski R, Coulston A, Reaven GM. Differences in postprandial lipemia between patients with normal glucose tolerance and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1993;76:172–177.
    1. Syvänne M, Hilden H, Taskinen MR. Abnormal metabolism of postprandial lipoproteins in patients with non-insulin-dependent diabetes mellitus is not related to coronary artery disease. J Lipid Res. 1994;35:15–26.
    1. Kolovou GD, Anagnostopoulou KK, Pavlidis AN, Salpea KD, Iraklianou SA, Tsarpalis K, Damaskos DS, Manolis A, Cokkinos DV. Postprandial lipemia in men with metabolic syndrome, hypertensives and healthy subjects. Lipids Health Dis. 2005;4:21. doi: 10.1186/1476-511X-4-21.
    1. Tentolouris N, Stylianou A, Lourida E, Perrea D, Kyriaki D, Papavasiliou EC, Tselepis AD, Katsilambros N. High postprandial triglyceridemia in patients with type 2 diabetes and microalbuminuria. J Lipid Res. 2007;48:218–225. doi: 10.1194/jlr.M600367-JLR200.
    1. Geltner C, Lechleitner M, Föger B, Ritsch A, Drexel H, Patsch JR. Insulin improves fasting and postprandial lipemia in type 2 diabetes. Eur J Intern Med. 2002;13:256–263. doi: 10.1016/S0953-6205(02)00038-9.
    1. Kolovou GD, Daskalova DC, Iraklianou SA, Adamopoulou EN, Pilatis ND, Hatzigeorgiou GC, Cokkinos DV. Postprandial Lipemia in Hypertension. J Am Coll Nutr. 2003;22:80–87. doi: 10.1080/07315724.2003.10719279.
    1. Sahade V, Franca S, Adan L. The influence of weight excess on the postprandial lipemia in adolescents. Lipids Health Dis. 2013;12:17. doi: 10.1186/1476-511X-12-17.
    1. Martinez-Hervas S, Navarro I, Real JT, Artero A, Peiro M, Gonzalez-Navarro H, Carmena R, Ascaso JF. Unsaturated oral fat load test improves Glycemia, Insulinemia and oxidative stress status in nondiabetic subjects with abdominal obesity. PLoS One. 2016;11:e0161400. doi: 10.1371/journal.pone.0161400.
    1. Vansant G, Mertens A, Muls E. Determinants of postprandial lipemia in obese women. Int J Obes. 1991;23:14–21. doi: 10.1038/sj.ijo.0800790.
    1. Mekki N, Christofilis MA, Charbonnier M, Atlan-Gepner C, Defoort C, Juhel C, Borel P, Portugal H, Pauli AM, Vialettes B, et al. Influence of obesity and body fat distribution on postprandial Lipemia and triglyceride-rich lipoproteins in adult women. J Clin Endocrinol Metab. 1999;84:184–191.
    1. Martins IJ, Redgrave TG. Obesity and post-prandial lipid metabolism. Feast or famine? 2004;15:130–141.
    1. Mittendorfer B, Yoshino M, Patterson BW, Klein S. VLDL triglyceride kinetics in lean, overweight, and obese men and women. J Clin Endocrinol Metab. 2016;101:4151–4160. doi: 10.1210/jc.2016-1500.
    1. Pi-Sunyer FX. Glycemic index and disease. Am J Clin Nutr. 2002;76(suppl):290S–298S.
    1. Matthan NR, Ausman LM, Meng H, Tighiouart H, Lichtenstein AH. Estimating the reliability of glycemic index values and potential sources of methodological and biological variability. Am J Clin Nutr. 2016;104:1004–1013. doi: 10.3945/ajcn.116.137208.
    1. Venn BJ, Green TJ. Glycemic index and glycemic load: measurement issues and their effect on diet-disease relationships. Eur J Clin Nutr. 2007;61(Suppl 1):S122-31.
    1. Ooi TC, Robinson L. Graham T, kolovou GD, Mikhailidis DP, Lairon D: proposing a “Lipemic index” as a nutritional and research tool. Curr Vasc Pharmacol. 2011;9:313–317. doi: 10.2174/157016111795495594.
    1. Nikolac N. Lipemia: causes, interference mechanisms, detection and management. Biochem Med (Zagreb) 2014;24:57–67. doi: 10.11613/BM.2014.008.

Source: PubMed

3
Abonnere