Postprandial Lipid Metabolism in Normolipidemic Subjects and Patients with Mild to Moderate Hypertriglyceridemia: Effects of Test Meals Containing Saturated Fatty Acids, Mono-Unsaturated Fatty Acids, or Medium-Chain Fatty Acids

Alexander Folwaczny, Elisa Waldmann, Julia Altenhofer, Kerstin Henze, Klaus G Parhofer, Alexander Folwaczny, Elisa Waldmann, Julia Altenhofer, Kerstin Henze, Klaus G Parhofer

Abstract

Fasting and postprandial hypertriglyceridemia are causal risk factors for atherosclerosis. The prevalence of hypertriglyceridemia is approximately 25-30% and most hypertriglyceridemic patients suffer from mild to moderate hypertriglyceridemia. Data regarding dietary interventions on postprandial triglyceride metabolism of mildly to moderately hypertriglyceridemic patients is, however, sparse. In a randomized controlled trial, eight mildly hypertriglyceridemic patients and five healthy, normolipidemic controls received three separate standardized fat-meals containing either saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), or medium-chain fatty acids (MCFA) in a randomized order. Fasting and postprandial lipid parameters were determined over a 10 h period and the (incremental) area under the curve (AUC/iAUC) for plasma triglycerides and other parameters were determined. MCFA do not lead to a significant elevation of postprandial total plasma triglycerides and other triglyceride parameters, while both SFA (patients: p = 0.003, controls: p = 0.03 compared to MCFA) and MUFA (patients: p = 0.001; controls: p = 0.14 compared to MCFA) do lead to such an increase. Patients experienced a significantly more pronounced increase of plasma triglycerides than controls (SFA: patients iAUC = 1006 mg*h/dL, controls iAUC = 247 mg*h/dL, p = 0.02; MUFA: patients iAUC = 962 mg*h/dL, controls iAUC = 248 mg*h/dL, p = 0.05). Replacing SFA with MCFA may be a treatment option for mildly to moderately hypertriglyceridemic patients as it prevents postprandial hypertriglyceridemia.

Keywords: MCT; fatty acids; hyperlipidemia; hypertriglyceridemia; medium chain triglycerides.

Conflict of interest statement

A.F., E.W., J.A., and K.H. have nothing to declare; K.G.P. has received honoraria for presentations from Schär. The funders had no role in the design of the study, the collection, analyses, or interpretation of data, the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Mean total triglyceride levels (mg/dL) over time (h) (A) for five normolipidemic subjects and (B) for eight mildly to moderately hypertriglyceridemic patients. SFA: saturated fatty acids; MUFA: mono-unsaturated fatty acids; MCFA: medium-chain fatty acids. Shown are means and standard error of mean. Please note difference in scale on y-axis.
Figure 2
Figure 2
Mean incremental area under the curve (mg*h /dL) for total triglycerides (A) for five normolipidemic subjects and (B) for eight mildly to moderately hypertriglyceridemic patients. SFA: saturated fatty acids; MUFA: mono-unsaturated fatty acids; MCFA: medium-chain fatty acids. Shown are means and standard error of mean. Please note difference in scale on y-axis.
Figure 3
Figure 3
Variability in fasting triglyceride levels for five normolipidemic controls (subjects 1–5) and eight mildly to moderately hypertriglyceridemic patients (6–13) during screening and before each of the different test meals. SFA, saturated fatty acids; MCFA, medium chain fatty acids; MUFA, monounsaturated fatty acids.

References

    1. Fan W., Philip S., Granowitz C., Toth P.P., Wong N.D. Prevalence of US Adults with Triglycerides >/= 150 mg/dl: NHANES 2007–2014. Cardiol. Ther. 2020;9:207–213. doi: 10.1007/s40119-020-00170-x.
    1. Retterstol K., Narverud I., Selmer R., Berge K.E., Osnes I.V., Ulven S.M., Halvorsen B., Aukrust P., Holven K.B., Iversen P.O. Severe hypertriglyceridemia in Norway: Prevalence, clinical and genetic characteristics. Lipids Health Dis. 2017;16:115. doi: 10.1186/s12944-017-0511-9.
    1. Ruiz-Garcia A., Arranz-Martinez E., Lopez-Uriarte B., Rivera-Teijido M., Palacios-Martinez D., Davila-Blazquez G.M., Rosillo-Gonzalez A., Gonzalez-Posada Delgado J.A., Marino-Suarez J.E., Revilla-Pascual E., et al. Prevalence of hypertriglyceridemia in adults and related cardiometabolic factors. SIMETAP-HTG study. Clin. Investig. Arterioscler. 2020;32:242–255.
    1. Jackson K.G., Poppitt S.D., Minihane A.M. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012;220:22–33. doi: 10.1016/j.atherosclerosis.2011.08.012.
    1. Laufs U., Parhofer K.G., Ginsberg H.N., Hegele R.A. Clinical review on triglycerides. Eur. Heart J. 2020;41:99–109c. doi: 10.1093/eurheartj/ehz785.
    1. Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L., Chapman M.J., De Backer G.G., Delgado V., Ference B.A., et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020;41:111–188. doi: 10.1093/eurheartj/ehz455.
    1. Parhofer K.G., Laufs U. The Diagnosis and Treatment of Hypertriglyceridemia. Dtsch. Arztebl. Int. 2019;116:825–832. doi: 10.3238/arztebl.2019.0825.
    1. Arca M., Veronesi C., D’Erasmo L., Borghi C., Colivicchi F., De Ferrari G.M., Desideri G., Pontremoli R., Temporelli P.L., Perrone V., et al. Association of Hypertriglyceridemia with All-Cause Mortality and Atherosclerotic Cardiovascular Events in a Low-Risk Italian Population: The TG-REAL Retrospective Cohort Analysis. J. Am. Heart Assoc. 2020;9:e015801. doi: 10.1161/JAHA.119.015801.
    1. Murad M.H., Hazem A., Coto-Yglesias F., Dzyubak S., Gupta S., Bancos I., Lane M.A., Erwin P.J., Berglund L., Elraiyah T., et al. The association of hypertriglyceridemia with cardiovascular events and pancreatitis: A systematic review and meta-analysis. BMC Endocr. Disord. 2012;12:2. doi: 10.1186/1472-6823-12-2.
    1. Sandesara P.B., Virani S.S., Fazio S., Shapiro M.D. The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr. Rev. 2019;40:537–557. doi: 10.1210/er.2018-00184.
    1. Ference B.A., Kastelein J.J.P., Ray K.K., Ginsberg H.N., Chapman M.J., Packard C.J., Laufs U., Oliver-Williams C., Wood A.M., Butterworth A.S., et al. Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants with Risk of Coronary Heart Disease. JAMA. 2019;321:364–373. doi: 10.1001/jama.2018.20045.
    1. Holmes M.V., Asselbergs F.W., Palmer T.M., Drenos F., Lanktree M.B., Nelson C.P., Dale C.E., Padmanabhan S., Finan C., Swerdlow D.I., et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 2015;36:539–550. doi: 10.1093/eurheartj/eht571.
    1. Nordestgaard B.G. A Test in Context: Lipid Profile, Fasting Versus Nonfasting. J. Am. Coll. Cardiol. 2017;70:1637–1646. doi: 10.1016/j.jacc.2017.08.006.
    1. Nordestgaard B.G., Langsted A., Mora S., Kolovou G., Baum H., Bruckert E., Watts G.F., Sypniewska G., Wiklund O., Boren J., et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur. Heart J. 2016;37:1944–1958.
    1. Eberly L.E., Stamler J., Neaton J.D., Multiple Risk Factor Intervention Trial Research Group Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch. Intern. Med. 2003;163:1077–1083. doi: 10.1001/archinte.163.9.1077.
    1. Nordestgaard B.G., Benn M., Schnohr P., Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298:299–308. doi: 10.1001/jama.298.3.299.
    1. Parhofer K.G., Barrett P.H., Schwandt P. Atorvastatin improves postprandial lipoprotein metabolism in normolipidemlic subjects. J. Clin. Endocrinol. Metab. 2000;85:4224–4230.
    1. Parhofer K.G., Laubach E., Barrett P.H. Effect of atorvastatin on postprandial lipoprotein metabolism in hypertriglyceridemic patients. J. Lipid Res. 2003;44:1192–1198. doi: 10.1194/jlr.M300011-JLR200.
    1. Koopal C., Marais A.D., Westerink J., van der Graaf Y., Visseren F.L.J. Effect of adding bezafibrate to standard lipid-lowering therapy on post-fat load lipid levels in patients with familial dysbetalipoproteinemia. A randomized placebo-controlled crossover trial. J. Lipid Res. 2017;58:2180–2187. doi: 10.1194/jlr.M076901.
    1. Nakamura K., Miyoshi T., Yunoki K., Ito H. Postprandial hyperlipidemia as a potential residual risk factor. J. Cardiol. 2016;67:335–339. doi: 10.1016/j.jjcc.2015.12.001.
    1. Burggraaf B., Pouw N.M.C., Arroyo S.F., van Vark-van der Zee L.C., van de Geijn G.M., Birnie E., Huisbrink J., van der Zwan E.M., Mulder M.T., Rensen P.C.N., et al. A placebo-controlled proof-of-concept study of alirocumab on postprandial lipids and vascular elasticity in insulin-treated patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2020;22:807–816. doi: 10.1111/dom.13960.
    1. El Khoury P., Waldmann E., Huby T., Gall J., Couvert P., Lacorte J.M., Chapman J., Frisdal E., Lesnik P., Parhofer K.G., et al. Extended-Release Niacin/Laropiprant Improves Overall Efficacy of Postprandial Reverse Cholesterol Transport. Arterioscler. Thromb. Vasc. Biol. 2016;36:285–294. doi: 10.1161/ATVBAHA.115.306834.
    1. Investigators A.-H., Boden W.E., Probstfield J.L., Anderson T., Chaitman B.R., Desvignes-Nickens P., Koprowicz K., McBride R., Teo K., Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011;365:2255–2267. doi: 10.1056/NEJMoa1107579.
    1. Papamandjaris A.A., MacDougall D.E., Jones P.J. Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sci. 1998;62:1203–1215. doi: 10.1016/S0024-3205(97)01143-0.
    1. Jeppesen P.B., Mortensen P.B. The influence of a preserved colon on the absorption of medium chain fat in patients with small bowel resection. Gut. 1998;43:478–483. doi: 10.1136/gut.43.4.478.

Source: PubMed

3
Abonnere