Food Intake and Satiety Response after Medium-Chain Triglycerides Ingested as Solid or Liquid

Tyler Maher, Alistair Sampson, Magdalena Goslawska, Cristina Pangua-Irigaray, Amir Shafat, Miriam E Clegg, Tyler Maher, Alistair Sampson, Magdalena Goslawska, Cristina Pangua-Irigaray, Amir Shafat, Miriam E Clegg

Abstract

Consuming medium-chain triglycerides (MCT) may reduce subsequent energy intake and increase satiety compared to long-chain triglycerides (LCT) but this may be dependent on the physical form in which MCT is ingested. Twenty-nine participants completed four trials where they consumed a breakfast containing either LCT or MCT in solid (Con-S and MCT-S, respectively) or liquid (Con-L and MCT-L, respectively) form. Appetite ratings and gastric emptying (GE) were taken at baseline and at 15 min intervals for 4 h. Energy intake was assessed at an ad libitum meal and via weighed food records for the remainder of the day. Ad libitum energy intake was highest in Con-L (4101 ± 1278 kJ vs. Con-S, 3323 ± 1196; MCT-S, 3516 ± 1058; MCT-L, 3257 ± 1345; p = 0.001). Intake over the whole day was significantly lower in MCT-L (7904 ± 3244) compared to Con-L (9531 ± 3557; p = 0.001). There were significant differences in GE times (p < 0.05), with MCT breakfasts delaying GE to a greater extent than LCT, and MCT-L having the longest GE times. There were no differences in appetite sensations. MCT reduce subsequent intake without affecting subjective sensations of appetite when consumed in liquid form.

Keywords: MCT; appetite; dietary fat; energy intake; food form; gastric emptying.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mean and individual energy intake (kJ) at the ad libitum meal (A), free-living environment (B) and total over the whole day (C). Data are expressed as means and vertical bars indicate standard deviation. * Denotes a significant difference compared to all other trials, # denotes a significant difference compared to control oil in liquid form (Con-L). Significance was accepted at the p < 0.05 level.
Figure 2
Figure 2
Area under the curve values for hunger, fullness, desire to eat (DTE) and prospective food consumption (PFC) following breakfasts in all trials. Data are expressed as means and vertical bars indicate standard deviation.

References

    1. Maher T., Clegg M.E. Dietary lipids with potential to affect satiety: Mechanisms and evidence. Crit. Rev. Food Sci. Nutr. 2018:1–26. doi: 10.1080/10408398.2017.1423277.
    1. Bach A.C., Babayan V.K. Medium-chain triglycerides: An update. Am. J. Clin. Nutr. 1982;36:950–962. doi: 10.1093/ajcn/36.5.950.
    1. Marten B., Pfeuffer M., Schrezenmeir J. Medium-chain triglycerides. Int. Dairy J. 2006;16:1374–1382. doi: 10.1016/j.idairyj.2006.06.015.
    1. Evans K., Kuusela P.J., Cruz M.L., Wilhelmova I., Fielding B.A., Frayn K.N. Rapid chylomicron appearance following sequential meals: effects of second meal composition. Br. J. Nutr. 1988;79:425–429. doi: 10.1079/BJN19980072.
    1. Page K.A., Seo D., Belfort-DeAguiar R., Lacadie C., Dzuira J., Naik S., Amarnath S., Constable R.T., Sherwin R.S., Sinha R. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J. Clin. Invest. 2011;121:4161–4169. doi: 10.1172/JCI57873.
    1. Zhang Y., Kuang Y., Xu K., Harris D., Lee Z., LaManna J., Puchowicz M.A. Ketosis proportionately spares glucose utilization in brain. J. Cereb. Blood Flow Metab. 2013;33:1307–1311. doi: 10.1038/jcbfm.2013.87.
    1. Rolls B.J., Gnizak N., Summerfelt A., Laster L.J. Food intake in dieters and nondieters after a liquid meal containing medium-chain triglycerides. Am. J. Clin. Nutr. 1988;48:66–71. doi: 10.1093/ajcn/48.1.66.
    1. Van Wymelbeke V., Louis-Sylvestre J., Fantino M. Substrate oxidation and control of food intake in men after a fat-substitute meal compared with meals supplemented with an isoenergetic load of carbohydrate, long-chain triacylglycerols, or medium-chain triacylglycerols. Am. J. Clin. Nutr. 2001;74:620–630. doi: 10.1093/ajcn/74.5.620.
    1. Van Wymelbeke V., Himaya A., Louis-Sylvestre J., Fantino M. Influence of medium-chain and long-chain triacylglycerols on the control of food intake in men. Am. J. Clin. Nutr. 1998;68:226–234. doi: 10.1093/ajcn/68.2.226.
    1. Coleman H., Quinn P., Clegg M.E. Medium chain triglycerides and conjugated linoleic acids in beverage form increase satiety and reduce food intake in humans. Nutr. Res. 2016;36:526–533. doi: 10.1016/j.nutres.2016.01.004.
    1. Kinsella R., Maher T., Clegg M.E. Coconut oil has less satiating properties than medium chain triglyceride oil. Physiol. Behav. 2017;179:422–426. doi: 10.1016/j.physbeh.2017.07.007.
    1. Poppitt S.D., Strik C.M., MacGibbon A.K.H., McArdle B.H., Budgett S.C., McGill A.T. Fatty acid chain length, postprandial satiety and food intake in lean men. Physiol. Behav. 2010;101:161–167. doi: 10.1016/j.physbeh.2010.04.036.
    1. St-Onge M., Mayrsohn B., O’Keeffe M., Kissileff H.R., Choudhury A.R., Laferrère B. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men. Eur. J. Clin. Nutr. 2014;68:1134–1140. doi: 10.1038/ejcn.2014.145.
    1. St-Onge M.-P., Jones P.J.H. Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J. Nutr. 2002;132:329–332. doi: 10.1093/jn/132.3.329.
    1. Little T.J., Feltrin K.L., Horowitz M., Smout A.J.P.M., Rades T., Meyer J.H., Pilichiewicz A.N., Wishart J., Feinle-Bisset C. Dose-related effects of lauric acid on antropyloroduodenal motility, gastrointestinal hormone release, appetite, and energy intake in healthy men. Am. J. Physiol. Integr. Comp. Physiol. 2005;289:R1090–R1098. doi: 10.1152/ajpregu.00290.2005.
    1. Stunkard A.J., Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985;29:71–83. doi: 10.1016/0022-3999(85)90010-8.
    1. Van Strien T., Frijters J.E.R., Bergers G.P.A., Defares P.B. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int. J. Eat. Disord. 1986;5:295–315. doi: 10.1002/1098-108X(198602)5:2<295::AID-EAT2260050209>;2-T.
    1. Shreeve W.W., Cerasi E., Luft R. Metabolism of [2-14C] pyruvate in normal, acromegalic and hgh-treated human subjects. Acta Endocrinol. (Copenh.) 1970;65:155–169. doi: 10.1530/acta.0.0650155.
    1. Ghoos Y.F., Maes B.D., Geypens B.J., Mys G., Hiele M.I., Rutgeerts P.J., Vantrappen G. Measurement of Gastric Emptying Rate of Solids by Means of a Carbon-Labeled Octanoic Acid Breath Test. Gastroenterology. 1993;104:1640–1647. doi: 10.1016/0016-5085(93)90640-X.
    1. Schommartz B., Ziegler D., Schadewaldt P. Significance of Diagnostic Parameters in [13C] Octanoic Acid Gastric Emptying Breath Tests*. Isotopes Environ. Health Stud. 1998;34:135–143. doi: 10.1080/10256019708036341.
    1. Hollis J.H. Beverage Impacts on Health and Nutrition. Springer International Publishing; Cham, Switzerland: 2016. Beverages, Satiation, Satiety, and Energy Balance; pp. 181–192.
    1. Hill J.O., Wyatt H.R., Reed G.W., Peters J.C. Obesity and the Environment: Where Do We Go from Here? Science. 2003;299:853–855. doi: 10.1126/science.1079857.
    1. Bloom B., Chaikoff I.L. Reinhardt Intestinal lymph as pathway for transport of absorbed fatty acids of different chain lengths. Am. J. Physiol. 1951;166:451–455. doi: 10.1152/ajplegacy.1951.166.2.451.
    1. Iber F.L. Relative rates of metabolism MCT, LCT and ethanol in man. Z. Ernahrungswiss Suppl. 1974;17:9–16.
    1. Clegg M.E., Pratt M., Markey O., Shafat A., Henry C.J.K. Addition of different fats to a carbohydrate food: Impact on gastric emptying, glycaemic and satiety responses and comparison with in vitro digestion. Food Res. Int. 2012;48:91–97. doi: 10.1016/j.foodres.2012.02.019.
    1. Hunt J.N., Knox M.T. A relation between the chain length of fatty acids and the slowing of gastric emptying. J. Physiol. 1968;194:327–336. doi: 10.1113/jphysiol.1968.sp008411.
    1. Achour L., Méance S., Briend A. Comparison of gastric emptying of a solid and a liquid nutritional rehabilitation food. Eur. J. Clin. Nutr. 2001;55:769–772. doi: 10.1038/sj.ejcn.1601221.
    1. Marciani L., Hall N., Pritchard S.E., Cox E.F., Totman J.J., Lad M., Hoad C.L., Foster T.J., Gowland P.A., Spiller R.C. Preventing Gastric Sieving by Blending a Solid/Water Meal Enhances Satiation in Healthy Humans. J. Nutr. 2012;142:1253–1258. doi: 10.3945/jn.112.159830.
    1. Clegg M.E., Ranawana V., Shafat A., Henry C.J. Soups increase satiety through delayed gastric emptying yet increased glycaemic response. Eur. J. Clin. Nutr. 2013;67:8–11. doi: 10.1038/ejcn.2012.152.
    1. Feinle C., Rades T., Otto B., Fried M. Fat digestion modulates gastrointestinal sensations induced by gastric distention and duodenal lipid in humans. Gastroenterology. 2001;120:1100–1107. doi: 10.1053/gast.2001.23232.
    1. Ledeboer M., Masclee A.A., Biemond I., Lamers C.B. Effect of equimolar amounts of long-chain triglycerides and medium-chain triglycerides on small-bowel transit time in humans. J. Parenter. Enter. Nutr. 1995;19:5–8. doi: 10.1177/014860719501900105.
    1. Janssen P., Vanden Berghe P., Verschueren S., Lehmann A., Depoortere I., Tack J. Review article: The role of gastric motility in the control of food intake. Aliment. Pharmacol. Ther. 2011;33:880–894. doi: 10.1111/j.1365-2036.2011.04609.x.
    1. Vist G.E., Maughan R.J. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J. Physiol. 1995;486:523–531. doi: 10.1113/jphysiol.1995.sp020831.
    1. Beckers E., Jeukendrup A., Brouns F., Wagenmakers A., Saris W. Gastric Emptying of Carbohydrate-Medium Chain Triglyceride Suspensions at Rest. Int. J. Sports Med. 1992;13:581–584. doi: 10.1055/s-2007-1024569.
    1. Clegg M.E., Thondre P.S., Henry C.J.K. Increasing the fat content of pancakes augments the digestibility of starch in-vitro. Food Res. Int. 2011;44:636–641. doi: 10.1016/j.foodres.2010.12.021.
    1. Clegg M.E. Medium-chain triglycerides are advantageous in promoting weight loss although not beneficial to exercise performance. Int. J. Food Sci. Nutr. 2010;61:653–679. doi: 10.3109/09637481003702114.
    1. Jeukendrup A.E., Thielen J.J., Wagenmakers A.J., Brouns F., Saris W.H. Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am. J. Clin. Nutr. 1998;67:397–404. doi: 10.1093/ajcn/67.3.397.
    1. Kolb S., Sailer D. Effect of Fat Emulsions Containing Medium-Chain Triglycerides and Glucose on Ketone Body Production and Excretion. J. Parenter. Enter. Nutr. 1984;8:285–289. doi: 10.1177/0148607184008003285.
    1. Forde C.G., Almiron-Roig E., Brunstrom J.M. Expected Satiety: Application to Weight Management and Understanding Energy Selection in Humans. Curr. Obes. Rep. 2015;4:131–140. doi: 10.1007/s13679-015-0144-0.

Source: PubMed

3
Abonnere