Clinical impact of endemic NDM-producing Klebsiella pneumoniae in intensive care units of the national referral hospital in Jakarta, Indonesia

Yulia Rosa Saharman, Anis Karuniawati, Rudyanto Sedono, Dita Aditianingsih, Wil H F Goessens, Corné H W Klaassen, Henri A Verbrugh, Juliëtte A Severin, Yulia Rosa Saharman, Anis Karuniawati, Rudyanto Sedono, Dita Aditianingsih, Wil H F Goessens, Corné H W Klaassen, Henri A Verbrugh, Juliëtte A Severin

Abstract

Objective: A prospective observational study was performed to assess the epidemiology and clinical impact of carbapenem-non-susceptible Klebsiella pneumoniae (CNKP) in intensive care units (ICUs) of the national referral hospital in Jakarta, Indonesia.

Materials/methods: Adult patients consecutively hospitalized for > 48 h in two ICUs of the national referral hospital were included from April until October 2013 and from April until August 2014. K. pneumoniae from clinical cultures and standardized screening of rectum and throat on admission, discharge and weekly if hospitalized > 7 days were collected. Environmental niches and healthcare workers (HCWs) were also screened. Susceptibility was determined phenotypically and the presence of carbapenemase genes by PCR. Raman spectroscopy as well as multiple-locus variable number tandem repeat analysis (MLVA) were used for typing.

Results: Twenty-two out of 412 (5.3%) patients carried CNKP on admission and 37/390 (9.5%) acquired CNKP during ICU stay. The acquisition rate was 24.7/1000 patient-days at risk. One out of 31 (3.2%) environmental isolates was a CNKP. None of the HCWs carried CNKP. Acquisition of CNKP was associated with longer ICU stay (adjusted Hazard Ratio: 2.32 [CI99: 1.35-3.68]). ICU survival was lower among patients with CNKP compared to patients with carbapenem-susceptible K. pneumoniae (aHR 2.57, p = 0.005). Ninety-six of the 100 (96%) CNKP isolates carried a carbapenemase gene, predominantly blaNDM. Raman typing revealed three major clusters among 48 Raman types identified, whereas MLVA distinguished six major clusters among a total of 30 different genotypes.

Conclusions: NDM-producing CNKP are introduced into these ICUs and some strains expand clonally among patients and the environment, resulting in endemic CNKP. CNKP acquisition was associated with prolonged ICU stay and may affect ICU survival.

Trial registration: The study was registered at Netherlands Trial Register http://www.trialregister.nl. Candidate number: 23527, NTR number: NTR5541, NL number: NL5425 (https://www.trialregister.nl/trial/5424), Retrospectively registered: NTR: 22 December 2015.

Keywords: Carbapenemase; Indonesia; Intensive care unit; Klebsiella pneumoniae; Microbial drug resistance; Mortality.

Conflict of interest statement

YRS is an awardee of the DIKTI-NESO Scholarship by The Directorate General of Higher Education of Indonesia Ministry of Research, Technology and Higher Education of the Republic of Indonesia, and Department of Medical Microbiology and Infectious Diseases, Erasmus MC in Rotterdam, The Netherlands.

All authors report no conflict of interest relevant to this article.

Figures

Fig. 1
Fig. 1
Rate of acquisition of carbapenem-susceptible and -non-susceptible K. pneumoniae in ICUs. Acquisition dynamics of carbapenem-susceptible and –non-susceptible K. pneumoniae during ICU stay. The blue line represents the cumulative percentage of patients by first day of culture being positive for carbapenem-susceptible K. pneumoniae during ICU stay. The red line represents the cumulative percentage of patients by first day of culture being positive for carbapenem-non-susceptible K. pneumoniae during ICU stay. P value was calculated using independent samples-Mann Whitney U test. In total, data from 100 patients are included in this figure
Fig. 2
Fig. 2
Cumulative percentage of length of stay according to K. pneumoniae status. Cumulative length of ICU stay of patients based on their K. pneumoniae status. Length of stay (days) represent total days patients were hospitalized in the ICU. The blue line represents patients that were always K. pneumoniae negative during their ICU stay. The red line represents patients already positive for carbapenem-susceptible K. pneumoniae on the day of admission. The green line represents patients already positive for carbapenem-non-susceptible K. pneumoniae on the day of admission. The orange line represents patients that acquired carbapenem-susceptible K. pneumoniae during ICU stay and the black line represents patients that acquired carbapenem-non-susceptible K. pneumoniae during ICU stay. The length of stay of patients that became positive with carbapenem-non-susceptible K. pneumoniae during ICU stay was longer than that of the other groups (Cox regression, P < 0.001)
Fig. 3
Fig. 3
Survival of patients according to their K. pneumoniae status. Survival of patients with carbapenem-non-susceptible K. pneumoniae (on admission or acquired during ICU stay) (red line) compared with the survival of patients that had carbapenem-susceptible K. pneumoniae (on admission or acquired during ICU stay) (blue line) in their screening and/or clinical cultures. P value was calculated using logistic regression
Fig. 4
Fig. 4
Persistence of prevalent clones of carbapenem-non-susceptible K. pneumoniae in ICUs, as determined by Raman spectroscopy typing. Endemicity of the three largest clusters, as determined by Raman spectroscopy, of carbapenem-non-susceptible K. pneumoniae in ICUs, April–October 2013 and April–August 2014. The orange bars represent cluster CIPTOKPN24. The blue bars represent CIPTOKPN27. The green bars represent CIPTOKPN30. The x-axis indicates time periods of the study (by week, April 2013-Oktober 2013 and April 2014–August 2014). The y-axis indicates number of isolates
Fig. 5
Fig. 5
MLVA minimum spanning trees of carbapenem-non-susceptible Klebsiella pneumoniae. Minimum spanning tree analysis of K. pneumoniae isolates based on clustering at the VNTR loci. Clusters of genotypes differing in only one marker are indicated with a grey background. Panel a: Colours correspond to specimens from which K. pneumoniae isolates were cultured. Panel b: Distribution of genotypes per patient. Each colour, except white, indicates a different patient. Only patients with 2 or more isolates are presented in this manner. Patients that had only one isolate of a carbapenem-non-susceptible K. pneumoniae are indicated by the colour white

References

    1. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.
    1. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–96.
    1. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–58.
    1. Tängdén T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med. 2015;277(5):501–12.
    1. Nordmann P. Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. Med Mal Infect. 2014;44(2):51–56. doi: 10.1016/j.medmal.2013.11.007.
    1. Shakil S, Azhar EI, Tabrez S, Kamal MA, Jabir NR, Abuzenadah AM, et al. New Delhi metallo-beta-lactamase (NDM-1): an update. J Chemother. 2011;23(5):263–265. doi: 10.1179/joc.2011.23.5.263.
    1. Dortet L, Cuzon G, Nordmann P. Dissemination of carbapenemase-producing Enterobacteriaceae in France, 2012. J Antimicrob Chemother. 2014;69(3):623–627. doi: 10.1093/jac/dkt433.
    1. Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in gram-negative bacteria. Biomed Res Int. 2014;2014:249856. doi: 10.1155/2014/249856.
    1. Teo J, Ngan G, Balm M, Jureen R, Krishnan P, Lin R. Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals. Western Pac Surveill Response J. 2012;3(1):19–24. doi: 10.5365/wpsar.2011.2.4.010.
    1. Rimrang B, Chanawong A, Lulitanond A, Wilailuckana C, Charoensri N, Sribenjalux P, et al. Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J Antimicrob Chemother. 2012;67(11):2626–2630. doi: 10.1093/jac/dks267.
    1. Karuniawati A, Saharman YR, Lestari DC. Detection of carbapenemase encoding genes in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from patients at intensive care unit Cipto Mangunkusumo hospital in 2011. Acta Med Indones. 2013;45(2):101–6.
    1. Sugianli AK, Ginting F, Kusumawati RL, Pranggono EH, Pasaribu AP, Gronthoud F, et al. Antimicrobial resistance in uropathogens and appropriateness of empirical treatment: a population-based surveillance study in Indonesia. J Antimicrob Chemother. 2017;72(5):1469–77.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Saharman YR, Karuniawati A, Sedono R, Aditianingsih D, Sudarmono P, Goessens WHF, et al. Endemic carbapenem-nonsusceptible Acinetobacter baumannii-calcoaceticus complex in intensive care units of the national referral hospital in Jakarta, Indonesia. Antimicrob Resist Infect Control. 2018;7:5.
    1. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 3.1 [Internet]. 2013. Available from: .
    1. Nadasy KA, Domiati-Saad R, Tribble MA. Invasive Klebsiella pneumoniae syndrome in North America. Clin Infect Dis. 2007;45(3):e25–e28. doi: 10.1086/519424.
    1. Van Dijk K, Voets GM, Scharringa J, Voskuil S, Fluit AC, Rottier WC, et al. A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clin Microbiol Infect. 2014;20(4):345–9.
    1. Islam MA, Talukdar PK, Hoque A, Huq M, Nabi A, Ahmed D, et al. Emergence of multidrug-resistant NDM-1-producing gram-negative bacteria in Bangladesh. Eur J Clin Microbiol Infect Dis. 2012;31(10):2593–2600. doi: 10.1007/s10096-012-1601-2.
    1. Moland ES, Black JA, Ourada J, Reisbig MD, Hanson ND, Thomson KS. Occurrence of newer beta-lactamases in Klebsiella pneumoniae isolates from 24 U.S. hospitals. Antimicrob Agents Chemother. 2002;46(12):3837–3842. doi: 10.1128/AAC.46.12.3837-3842.2002.
    1. Aktas Z, Kayacan CB, Schneider I, Can B, Midilli K, Bauernfeind A. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy. 2008;54(2):101–106. doi: 10.1159/000118661.
    1. Maquelin K, Dijkshoorn L, van der Reijden TJ, Puppels GJ. Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J Microbiol Methods. 2006;64(1):126–131. doi: 10.1016/j.mimet.2005.04.028.
    1. Willemse-Erix DF, Scholtes-Timmerman MJ, Jachtenberg JW, van Leeuwen WB, Horst-Kreft D, Bakker Schut TC, et al. Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol. 2009;47(3):652–659. doi: 10.1128/JCM.01900-08.
    1. Willemse-Erix D, Bakker-Schut T, Slagboom-Bax F, Jachtenberg JW, Lemmens-den Toom N, Papagiannitsis CC, et al. Rapid typing of extended-spectrum beta-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolates by use of SpectraCell RA. J Clin Microbiol. 2012;50(4):1370–1375. doi: 10.1128/JCM.05423-11.
    1. Brink AA, von Wintersdorff CJ, van der Donk CF, Peeters AM, Beisser PS, Stobberingh EE, et al. Development and validation of a single-tube multiple-locus variable number tandem repeat analysis for Klebsiella pneumoniae. PLoS One. 2014;9(3):e91209. doi: 10.1371/journal.pone.0091209.
    1. Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16(3):1141–1154. doi: 10.1214/aos/1176350951.
    1. Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transpl. 2007;40(4):381–387. doi: 10.1038/sj.bmt.1705727.
    1. Johnson VE. Revised standards for statistical evidence. Proc Natl Acad Sci U S A. 2013;110(48):19313–19317. doi: 10.1073/pnas.1313476110.
    1. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263–272. doi: 10.1016/j.molmed.2012.03.003.
    1. Ling ML, Tee YM, Tan SG, Amin IM, How KB, Tan KY, et al. Risk factors for acquisition of carbapenem resistant Enterobacteriaceae in an acute tertiary care hospital in Singapore. Antimicrob Resist Infect Control. 2015;4:26. doi: 10.1186/s13756-015-0066-3.
    1. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in south and Southeast Asia. Clin Microbiol Rev. 2017;30(1):1–22. doi: 10.1128/CMR.00042-16.
    1. Barguigua A, Zerouali K, Katfy K, El Otmani F, Timinouni M, Elmdaghri N. Occurrence of OXA-48 and NDM-1 carbapenemase-producing Klebsiella pneumoniae in a Moroccan university hospital in Casablanca. Morocco Infect Genet Evol. 2015;31:142–148. doi: 10.1016/j.meegid.2015.01.010.
    1. Hoxha A, Karki T, Giambi C, Montano C, Sisto A, Bella A, et al. Attributable mortality of carbapenem-resistant Klebsiella pneumoniae infections in a prospective matched cohort study in Italy, 2012-2013. J Hosp Infect. 2016;92(1):61–66. doi: 10.1016/j.jhin.2015.06.018.
    1. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355–362. doi: 10.1016/S1473-3099(11)70059-7.
    1. Martin RM, Cao J, Brisse S, Passet V, Wu W, Zhao L, et al. Molecular Epidemiology of Colonizing and Infecting Isolates of Klebsiella pneumoniae. mSphere. 2016;1(5):e00261-16:1-1212.
    1. Borer A, Saidel-Odes L, Eskira S, Nativ R, Riesenberg K, Livshiz-Riven I, et al. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K. pneumoniae. Am J Infect Control. 2012;40(5):421–425. doi: 10.1016/j.ajic.2011.05.022.
    1. Dautzenberg MJ, Wekesa AN, Gniadkowski M, Antoniadou A, Giamarellou H, Petrikkos GL, et al. The association between colonization with carbapenemase-producing enterobacteriaceae and overall ICU mortality: an observational cohort study. Crit Care Med. 2015;43(6):1170–1177. doi: 10.1097/CCM.0000000000001028.
    1. Falcone M, Russo A, Iacovelli A, Restuccia G, Ceccarelli G, Giordano A, et al. Predictors of outcome in ICU patients with septic shock caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin Microbiol Infect. 2016;22(5):444–450. doi: 10.1016/j.cmi.2016.01.016.
    1. Hussein K, Raz-Pasteur A, Finkelstein R, Neuberger A, Shachor-Meyouhas Y, Oren I, et al. Impact of carbapenem resistance on the outcome of patients' hospital-acquired bacteraemia caused by Klebsiella pneumoniae. J Hosp Infect. 2013;83(4):307–313. doi: 10.1016/j.jhin.2012.10.012.
    1. Kuntaman K, Shigemura K, Osawa K, Kitagawa K, Sato K, Yamada N, et al. Occurrence and characterization of carbapenem-resistant gram-negative bacilli: a collaborative study of antibiotic-resistant bacteria between Indonesia and Japan. Int J Urol. 2018;25(11):966–972. doi: 10.1111/iju.13787.
    1. Liu H, Fei CN, Zhang Y, Liu GW, Liu J, Dong J. Presence, distribution and molecular epidemiology of multi-drug-resistant gram-negative bacilli from medical personnel of intensive care units in Tianjin, China, 2007-2015. J Hosp Infect. 2017;96(2):101–110. doi: 10.1016/j.jhin.2017.01.012.
    1. Wei WJ, Yang HF, Ye Y, Li JB. New Delhi Metallo-beta-lactamase-mediated Carbapenem resistance: origin, diagnosis, treatment and public health concern. Chin Med J. 2015;128(14):1969–1976. doi: 10.4103/0366-6999.160566.
    1. Bouguenoun W, Bakour S, Bentorki AA, Al Bayssari C, Merad T, Rolain JM. Molecular epidemiology of environmental and clinical carbapenemase-producing gram-negative bacilli from hospitals in Guelma, Algeria: multiple genetic lineages and first report of OXA-48 in Enterobacter cloacae. J Glob Antimicrob Resist. 2016;7:135–140. doi: 10.1016/j.jgar.2016.08.011.
    1. Yagoubat M, Ould El-Hadj-Khelil A, Malki A, Bakour S, Touati A, Rolain JM. Genetic characterisation of carbapenem-resistant gram-negative bacteria isolated from the university hospital Mohamed Boudiaf in Ouargla, southern Algeria. J Glob Antimicrob Resist. 2016;8:55–59. doi: 10.1016/j.jgar.2016.10.008.
    1. Zheng R, Zhang Q, Guo Y, Feng Y, Liu L, Zhang A, et al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China. Ann Clin Microbiol Antimicrob. 2016;15:10.
    1. Wang X, Xu X, Li Z, Chen H, Wang Q, Yang P, et al. An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microb Drug Resist. 2014;20(2):144–149. doi: 10.1089/mdr.2013.0100.
    1. Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-beta-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev. 2019;32(2):e00115–8.

Source: PubMed

3
Abonnere