Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation

Gaia Favero, Lorenzo Franceschetti, Francesca Bonomini, Luigi Fabrizio Rodella, Rita Rezzani, Gaia Favero, Lorenzo Franceschetti, Francesca Bonomini, Luigi Fabrizio Rodella, Rita Rezzani

Abstract

Inflammation may be defined as the innate response to harmful stimuli such as pathogens, injury, and metabolic stress; its ultimate function is to restore the physiological homeostatic state. The exact aetiology leading to the development of inflammation is not known, but a combination of genetic, epigenetic, and environmental factors seems to play an important role in the pathogenesis of many inflammation-related clinical conditions. Recent studies suggest that the pathogenesis of different inflammatory diseases also involves the inflammasomes, intracellular multiprotein complexes that mediate activation of inflammatory caspases thereby inducing the secretion of proinflammatory cytokines. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule with fundamental clinical applications. It is involved in mood modulation, sexual behavior, vasomotor control, and immunomodulation and influences energy metabolism; moreover, it acts as an oncostatic and antiaging molecule. Melatonin is an important antioxidant and also a widespread anti-inflammatory molecule, modulating both pro- and anti-inflammatory cytokines in different pathophysiological conditions. This review, first, gives an overview concerning the growing importance of melatonin in the inflammatory-mediated pathological conditions and, then, focuses on its roles and its protective effects against the activation of the inflammasomes and, in particular, of the NLRP3 inflammasome.

Figures

Figure 1
Figure 1
NLRP3 inflammasome activation pathways. ASC: apoptotic-associated speck-like protein containing a caspase recruitment domain; CPPD: calcium pyrophosphate dihydrate; DAMP: danger-associated molecular pattern; LPS: lipopolysaccharide; MDP: muramyl dipeptide; MAMP: microbial-associated molecular pattern; MSU: monosodium urate; ROS: reactive oxygen species; TXNIP: thioredoxin-interacting protein; Casp-1: caspase-1. From Conforti-Andreoni et al. [126] (reprinted by permission—Cellular & Molecular Immunology license number 4125310130103).
Figure 2
Figure 2
Schematic representation of melatonin's protective effects against the inflammatory process involving NF-κB and NLRP3 inflammasome activation.
Figure 3
Figure 3
Melatonin protective effects against the development of oral mucositis. In detail, melatonin gel may defend mitochondria and inhibit NF-κB and NLRP3 inflammasome pathways, reducing inflammation and apoptosis. From Ortiz et al. [150] (reprinted by permission—Journal of Pineal Research license number 4123021400967).

References

    1. Hardeland R., Poeggeler B. Non-vertebrate melatonin. Journal of Pineal Research. 2003;34:233–241. doi: 10.1034/j.1600-079x.2003.00040.x.
    1. Iriti M., Varoni E. M., Vitalini S. Melatonin in traditional Mediterranean diets. Journal of Pineal Research. 2010;49:101–105. doi: 10.1111/j.1600-079X.2010.00777.x.
    1. Slominski R. M., Reiter R. J., Schlabritz-Loutsevitch N., Ostrom R. S., Slominski A. T. Melatonin membrane receptors in peripheral tissues: distribution and functions. Molecular and Cellular Endocrinology. 2012;351:152–166. doi: 10.1016/j.mce.2012.01.004.
    1. Reiter R. J., Tan D. X., Korkmaz A. The circadian melatonin rhythm and its modulation: possible impact on hypertension. Journal of Hypertension Supplement. 2009;27:S17–S20. doi: 10.1097/.
    1. Singh M., Jadhav H. R. Melatonin: functions and ligands. Drug Discovery Today. 2014;19:1410–1418. doi: 10.1016/j.drudis.2014.04.014.
    1. Stehle J. H., Saade A., Rawashdeh O., et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. Journal of Pineal Research. 2011;51:17–43. doi: 10.1111/j.1600-079X.2011.00856.x.
    1. Acuña-Castroviejo D., Escames G., Venegas C., et al. Extrapineal melatonin: sources, regulation, and potential functions. Cellular and Molecular Life Sciences. 2014;71:2997–3025. doi: 10.1007/s00018-014-1579-2.
    1. Esteban-Zubero E., Alatorre-Jiménez M. A., López-Pingarrón L., et al. Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: a review. Pharmacological Research. 2016;105:108–120. doi: 10.1016/j.phrs.2016.01.018.
    1. Manchester L. C., Coto-Montes A., Boga J. A., et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. Journal of Pineal Research. 2015;59:403–419.
    1. Zagajewski J., Drozdowicz D., Brzozowska I., et al. Conversion L-tryptophan to melatonin in the gastrointestinal tract: the new high performance liquid chromatography method enabling simultaneous determination of six metabolites of L-tryptophan by native fluorescence and UV-VIS detection. Journal of Physiology and Pharmacology. 2012;63:613–621.
    1. Zhang H. M., Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. Journal of Pineal Research. 2014;57:131–146. doi: 10.1111/jpi.12162.
    1. Bravo R., Matito S., Cubero J., et al. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Dordrecht, Netherlands) 2013;35:1277–1285. doi: 10.1007/s11357-012-9419-5.
    1. Reiter R. J. Melatonin: that ubiquitously-acting pineal hormone. News in Physiological Sciences. 1991;6:223–227.
    1. Reiter R. J., Tan D. X., Galano A. Melatonin: exceeding expectations. Physiology (Bethesda, Md.) 2014;29:325–333. doi: 10.1152/physiol.00011.2014.
    1. Dominguez-Rodriguez A., Abreu-Gonzalez P., Reiter R. J. Clinical aspects of melatonin in the acute coronary syndrome. Current Vascular Pharmacology. 2009;7:367–373. doi: 10.2174/157016109788340749.
    1. Reiter R. J. The melatonin rhythm: both a clock and a calendar. Experientia. 1993;49:654–664. doi: 10.1007/bf01923947.
    1. Axelrod J., Wurtman R. J., Snyder S. H. Control of hydroxyindole-O-methyltransferase activity in the rat pineal gland by environmental lightening. Nature. 1985;201:p. 1134.
    1. Claustrat B., Leston J. Melatonin: physiological effects in humans. Neuro-Chirurgie. 2015;61:77–84. doi: 10.1016/j.neuchi.2015.03.002.
    1. Weissbach A. A novel system for the incorporation of amino acids by extracts of E. coli B. Biochimica et Biophysica Acta. 1960;41:498–509. doi: 10.1016/0006-3002(60)90048-2.
    1. Claustrat B., Brun J., Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Medicine Reviews. 2005;9:11–24. doi: 10.1016/j.smrv.2004.08.001.
    1. Favero G., Franceschetti L., Buffoli B., et al. Melatonin: protection against age-related cardiac pathology. Ageing Research Reviews. 2017;35:336–349. doi: 10.1016/j.arr.2016.11.007.
    1. Pandi-Perumal S. R., Srinivasan V., Maestroni G. J., Cardinali D. P., Poeggeler B., Hardeland R. Melatonin: nature’s most versatile biological signal? The FEBS Journal. 2006;273:2813–2838. doi: 10.1111/j.1742-4658.2006.05322.x.
    1. Venegas C., García J. A., Escames G., et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. Journal of Pineal Research. 2012;52:217–227. doi: 10.1111/j.1600-079X.2011.00931.x.
    1. Gonzalez-Arto M., Hamilton T. R., Gallego M., et al. Evidence of melatonin synthesis in the ram reproductive tract. Andrology. 2016;4:163–171. doi: 10.1111/andr.12117.
    1. Facciola G., Hidestrand M., von Bahr C., Tybring G. Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. European Journal of Clinical Pharmacology. 2001;56:881–888. doi: 10.1007/s002280000245.
    1. Reiter R. J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Reviews. 1991;12:151–180. doi: 10.1210/edrv-12-2-151.
    1. Grace M. S., Cahill G. M., Besharse J. C. Melatonin deacetylation: retinal vertebrate class distribution and Xenopus laevis tissue distribution. Brain Research. 1991;559:56–63. doi: 10.1016/0006-8993(91)90286-5.
    1. Rogawski M. A., Roth R. H., Aghajanian G. K. Melatonin: deacetylation to 5-methoxytryptamine by liver but not brain aryl acylamidase. Journal of Neurochemistry. 1979;32:1219–1226. doi: 10.1111/j.1471-4159.1979.tb11049.x.
    1. Hardeland R., Reiter R. J., Poeggeler B., Tan D. X. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neuroscience and Biobehavioral Reviews. 1993;17:347–357. doi: 10.1016/s0149-7634(05)80016-8.
    1. Slominski A., Tobin D. J., Zmijewski M. A., Wortsman J., Paus R. Melatonin in the skin: synthesis, metabolism and functions. Trends in Endocrinology and Metabolism. 2008;19:17–24. doi: 10.1016/j.tem.2007.10.007.
    1. Tan D. X., Manchester L. C., Terron M. P., Flores L. J., Reiter R. J. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? Journal of Pineal Research. 2007;42:28–42. doi: 10.1111/j.1600-079X.2006.00407.x.
    1. Jeon H. L., Yoo J. M., Lee B. D., Lee S. J., Sohn E. J., Kim M. R. Anti-inflammatory and antioxidant actions of N-arachidonoyl serotonin in RAW264.7 cells. Pharmacology. 2016;97:195–206. doi: 10.1159/000443739.
    1. Kalogiannis M., Delikatny E. J., Jeitner T. M. Serotonin as a putative scavenger of hypohalous acid in the brain. Biochimica et Biophysica Acta. 2016;1862:651–661. doi: 10.1016/j.bbadis.2015.12.012.
    1. Lerner A. B., Case J. D., Takahashi Y., Lee T. H., Mori N. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society. 1958;80:2587–2592. doi: 10.1021/ja01543a060.
    1. Lerner A. B., Case J. D., Heinzelmann R. V. Structure of melatonin. Journal of the American Chemical Society. 1959;81:6085. doi: 10.1021/ja01531a060.
    1. Agabiti-Rosei C., Favero G., De Ciuceis C., et al. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice. Hypertension Research. 2017;40:41–50. doi: 10.1038/hr.2016.103.
    1. Hardeland R., Cardinali D. P., Srinivasan V., Spence D. W., Brown G. M., Pandi-Perumal S. R. Melatonin—a pleiotropic, orchestrating regulator molecule. Progress in Neurobiology. 2011;93:350–384. doi: 10.1016/j.pneurobio.2010.12.004.
    1. Hardeland R., Poeggeler B. Melatonin beyond its classical functions. Open Physiology Journal. 2008;1:1–23. doi: 10.2174/1874360900801010001.
    1. Celinski K., Konturek S. J., Konturek P. C., et al. Melatonin or L-tryptophan accelerates healing of gastroduodenal ulcers in patients treated with omeprazole. Journal of Pineal Research. 2011;50:389–394. doi: 10.1111/j.1600-079X.2011.00855.x.
    1. Leja-Szpak A., Jaworek J., Pierzchalski P., Reiter R. J. Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1) Journal of Pineal Research. 2010;49:248–255. doi: 10.1111/j.1600-079X.2010.00789.x.
    1. Pandi-Perumal S. R., Trakht I., Srinivasan V., et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Progress in Neurobiology. 2008;85:335–353. doi: 10.1016/j.pneurobio.2008.04.001.
    1. Yu H. S., Hernandez V., Haywood M., Wong C. G. Melatonin inhibits the proliferation of retinal pigment epithelial (RPE) cells in vitro. In Vitro Cellular & Developmental Biology. Animal. 1993;29A:415–418. doi: 10.1007/bf02633991.
    1. Emet M., Ozcan H., Ozel L., Yayla M., Halici Z., Hacimuftuoglu A. A review of melatonin, its receptors and drugs. The Eurasian Journal of Medicine. 2016;48:135–141. doi: 10.5152/eurasianjmed.2015.0267.
    1. Erren T. C., Reiter R. J. Melatonin: a universal time messenger. Neuro Endocrinology Letters. 2015;36:187–192.
    1. Mauriz J. L., Collado P. S., Veneroso C., Reiter R. J., González-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. Journal of Pineal Research. 2013;54:1–14. doi: 10.1111/j.1600-079X.2012.01014.x.
    1. Dubocovich M. L., Rivera-Bermudez M. A., Gerdin M. J., Masana M. I. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Frontiers in Bioscience. 2003;8:d1093–d1108. doi: 10.2741/1089.
    1. Dubocovich M. L., Delagrange P., Krause D. N., Sugden D., Cardinali D. P., Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacological Reviews. 2010;62:343–380. doi: 10.1124/pr.110.002832.
    1. Witt-Enderby P. A., Bennett J., Jarzynka M. J., Firestine S., Melan M. A. Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sciences. 2003;72:2183–2198. doi: 10.1016/s0024-3205(03)00098-5.
    1. Dubocovich M. L., Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101–110. doi: 10.1385/ENDO:27:2:101.
    1. Dubocovich M. L., Hudson R. L., Sumaya I. C., Masana M. I., Manna E. Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. Journal of Pineal Research. 2005;39:113–120. doi: 10.1111/j.1600-079X.2005.00230.x.
    1. Flemström G., Bengtsson M. W., Mäkelä K., Herzig K. H. Effects of short-term food deprivation on orexin-A-induced intestinal bicarbonate secretion in comparison with related secretagogues. Acta Physiologica (Oxford, England) 2010;198:373–380. doi: 10.1111/j.1748-1716.2009.02067.x.
    1. Lardone P. J., Carrillo-Vico A., Molinero P., Rubio A., Guerrero J. M. A novel interplay between membrane and nuclear melatonin receptors in human lymphocytes: significance in IL-2 production. Cellular and Molecular Life Sciences. 2009;66:516–525. doi: 10.1007/s00018-008-8601-5.
    1. Srinivasan V., Pandi-Perumal S. R., Spence D. W., Kato H., Cardinali D. P. Melatonin in septic shock: some recent concepts. Journal of Critical Care. 2010;25:p. 656.e1-6. doi: 10.1016/j.jcrc.2010.03.006.
    1. Vella F., Ferry G., Delagrange P., Boutin J. A. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochemical Pharmacology. 2005;71:1–12. doi: 10.1016/j.bcp.2005.09.019.
    1. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomedicine & Pharmacotherapy. 2006;60:97–108. doi: 10.1016/j.biopha.2006.01.002.
    1. Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. Journal of Pineal Research. 2013;55:325–356. doi: 10.1111/jpi.12090.
    1. Yonei Y., Hattori A., Tsutsui K., Okawa M., Ishizuka B. Effects of melatonin: basic studies and clinical applications. Anti-Ageing Medicine. 2003;7:85–91.
    1. Nosjean O., Nicolas J. P., Klupsch F., Delagrange P., Canet E., Boutin J. A. Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2. Biochemical Pharmacology. 2001;61:1369–1379. doi: 10.1016/s0006-2952(01)00615-3.
    1. Carlberg C. Gene regulation by melatonin. Annals of the New York Academy of Sciences. 2000;917:387–396. doi: 10.1111/j.1749-6632.2000.tb05403.x.
    1. Carrillo-Vico A., Lardone P. J., Fernandez-Santos J. M., et al. Human lymphocyte-synthesized melatonin is involved in the regulation of the interleukin-2/interleukin-2 receptor system. The Journal of Clinical Endocrinology and Metabolism. 2005;90:992–1000. doi: 10.1210/jc.2004-1429.
    1. Roy D., Angelini N. L., Fujieda H., Brown G. M., Belsham D. D. Cyclical regulation of GnRH gene expression in GT1-7 GnRH-secreting neurons by melatonin. Endocrinology. 2001;142:4711–4720. doi: 10.1210/endo.142.11.8464.
    1. Benitez-King G., Huerto-Delgadillo L., Anton-Tay F. Binding of 3H-melatonin to calmodulin. Life Sciences. 1993;53:201–207. doi: 10.1016/0024-3205(93)90670-x.
    1. Macias M., Escames G., León J., et al. Calreticulin-melatonin. An unexpected relationship. European Journal of Biochemistry. 2003;270:832–840.
    1. Lissoni P., Pittalis S., Rovelli F., et al. Immunomodulatory properties of a pineal indole hormone other than melatonin, the 5-methoxytryptophol. Journal of Biological Regulators and Homeostatic Agents. 1996;10:27–30.
    1. Mazzoccoli G., Carughi S., De C. A., La V. M., Vendemiale G. Melatonin and cortisol serum levels in lung cancer patients at different stages of disease. Medical Science Monitor. 2005;11:CR284–CR288.
    1. Scholtens R. M., van Munster B. C., van Kempen M. F., de Rooij S. E. Physiological melatonin levels in healthy older people: a systematic review. Journal of Psychosomatic Research. 2016;86:20–27. doi: 10.1016/j.jpsychores.2016.05.005.
    1. Lanfumey L., Mongeau R., Hamon M. Biological rhythms and melatonin in mood disorders and their treatments. Pharmacology & Therapeutics. 2013;138:176–184. doi: 10.1016/j.pharmthera.2013.01.005.
    1. Srinivasan V., Smits M., Spence W., et al. Melatonin in mood disorders. The World Journal of Biological Psychiatry. 2006;7:138–151. doi: 10.1080/15622970600571822.
    1. Karasek M. Melatonin, human aging, and age-related diseases. Experimental Gerontology. 2004;39:1723–1729. doi: 10.1016/j.exger.2004.04.012.
    1. Olbrich D., Dittmar M. Older poor-sleeping women display a smaller evening increase in melatonin secretion and lower values of melatonin and core body temperature than good sleepers. Chronobiology International. 2011;28:681–689. doi: 10.3109/07420528.2011.599904.
    1. Pandi-Perumal S. R., Zisapel N., Srinivasan V., Cardinali D. P. Melatonin and sleep in aging population. Experimental Gerontology. 2005;40:911–925. doi: 10.1016/j.exger.2005.08.009.
    1. Xie Z., Chen F., Li W. A., et al. A review of sleep disorders and melatonin. Neurological Research. 2017;39:559–565. doi: 10.1080/01616412.2017.1315864.
    1. Erren T. C., Reiter R. J. Defining chronodisruption. Journal of Pineal Research. 2009;46:245–247. doi: 10.1111/j.1600-079X.2009.00665.x.
    1. Bonmati-Carrion M. A., Arguelles-Prieto R., Martinez-Madrid M. J., et al. Protecting the melatonin rhythm through circadian healthy light exposure. International Journal of Molecular Sciences. 2014;15:23448–23500. doi: 10.3390/ijms151223448.
    1. Pines A. Circadian rhythm and menopause. Climacteric. 2016;19:551–552. doi: 10.1080/13697137.2016.1226608.
    1. Karasek M., Reiter R. J. Melatonin and aging. Neuro Endocrinology Letters. 2002;23:14–16.
    1. Zhao Z. Y., Xie Y., Fu Y. R., Bogdan A., Touitou Y. Aging and the circadian rhythm of melatonin: a cross-sectional study of Chinese subjects 30–110 yr of age. Chronobiology International. 2002;19:1171–1182. doi: 10.1081/cbi-120015958.
    1. Reiter R. J., Tan D., Kim S. J., et al. Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mechanisms of Ageing and Development. 1999;110:157–173. doi: 10.1016/s0047-6374(99)00058-5.
    1. Andersen L. P., Gögenur I., Rosenberg J., Reiter R. J. The safety of melatonin in humans. Clinical Drug Investigation. 2016;36:169–175. doi: 10.1007/s40261-015-0368-5.
    1. Cheung R. T., Tipoe G. L., Tam S., Ma E. S., Zou L. Y., Chan P. S. Preclinical evaluation of pharmacokinetics and safety of melatonin in propylene glycol for intravenous administration. Journal of Pineal Research. 2006;41:337–343. doi: 10.1111/j.1600-079X.2006.00372.x.
    1. Chen J., Chen G., Li J., et al. Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. Journal of Pineal Research. 2014;57:340–347. doi: 10.1111/jpi.12173.
    1. Dong Y., Fan C., Hu W., et al. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. Journal of Pineal Research. 2016;60:253–262. doi: 10.1111/jpi.12300.
    1. Antonelli M., Kushner I. It’s time to redefine inflammation. The FASEB Journal. 2017;31:1787–1791. doi: 10.1096/fj.201601326R.
    1. Garg N., Smith T. W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain and Behavior: A Cognitive Neuroscience Perspective. 2015;5, article e00362 doi: 10.1002/brb3.362.
    1. Kaunzner U. W., Al-Kawaz M., Gauthier S. A. Defining disease activity and response to therapy in MS. Current Treatment Options in Neurology. 2017;19:p. 20. doi: 10.1007/s11940-017-0454-5.
    1. Yadav S. K., Mindur J. E., Ito K., Dhib-Jalbut S. Advances in the immunopathogenesis of multiple sclerosis. Current Opinion in Neurology. 2015;28:206–219. doi: 10.1097/WCO.0000000000000205.
    1. Chuffa L. G. A., Reiter R. J., Lupi Júnior L. A. Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis. 2017 doi: 10.1093/carcin/bgx054.
    1. Galano A., Tan D. X., Reiter R. J. Melatonin as a natural ally against oxidative stress: a physicochemical examination. Journal of Pineal Research. 2011;51:1–16. doi: 10.1111/j.1600-079X.2011.00916.x.
    1. Mistraletti G., Paroni R., Umbrello M., et al. Melatonin pharmacological blood levels increase total antioxidant capacity in critically ill patients. International Journal of Molecular Sciences. 2017;18 doi: 10.3390/ijms18040759.
    1. Agil A., Reiter R. J., Jiménez-Aranda A., et al. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. Journal of Pineal Research. 2013;54:381–388. doi: 10.1111/jpi.12012.
    1. Bonnefont-Rousselot D., Collin F., Jore D., Gardès-Albert M. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. Journal of Pineal Research. 2011;50:328–335. doi: 10.1111/j.1600-079X.2010.00847.x.
    1. Carrillo-Vico A., Lardone P. J., Alvarez-Sánchez N., Rodríguez-Rodríguez A., Guerrero J. M. Melatonin: buffering the immune system. International Journal of Molecular Sciences. 2013;14:8638–8683. doi: 10.3390/ijms14048638.
    1. Reiter R. J., Calvo J. R., Karbownik M., Qi W., Tan D. X. Melatonin and its relation to the immune system and inflammation. Annals of the New York Academy of Sciences. 2000;917:376–386. doi: 10.1111/j.1749-6632.2000.tb05402.x.
    1. Baeuerle P. A., Baltimore D. NF-kappa B: ten years after. Cell. 1996;87:13–20. doi: 10.1016/s0092-8674(00)81318-5.
    1. Cuzzocrea S., Reiter R. J. Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. European Journal of Pharmacology. 2001;426:1–10.
    1. Korkmaz A., Rosales-Corral S., Reiter R. J. Gene regulation by melatonin linked to epigenetic phenomena. Gene. 2012;503(1):1–11. doi: 10.1016/j.gene.2012.04.040.
    1. Lezovalch F., Sparapani M., Behl C. N-Acetyl-serotonin (normelatonin) and melatonin in protect neurons against oxidative challenges and suppresses the activity of the transcription factor NF-kB. Journal of Pineal Research. 1998;24:168–178. doi: 10.1111/j.1600-079x.1998.tb00530.x.
    1. Vriend J., Reiter R. J. Melatonin as a proteasome inhibitor. Is there any clinical evidence? Life Sciences. 2014;115:8–14. doi: 10.1016/j.lfs.2014.08.024.
    1. Brzezinski A. Melatonin in humans. The New England Journal of Medicine. 1997;336:186–195. doi: 10.1056/NEJM199701163360306.
    1. Lissoni P., Rovelli F., Meregalli S., et al. Melatonin as a new possible anti-inflammatory agent. Journal of Biological Regulators and Homeostatic Agents. 1997;11:157–159.
    1. Santangelo C., Varì R., Scazzocchio B., Di Benedetto R., Filesi C., Masella R. Polyphenols, intracellular signalling and inflammation. Annali dell'Istituto Superiore di Sanità. 2007;43:394–405.
    1. Habtemariam S., Daglia M., Sureda A., Selamoglu Z., Gulhan M. F., Nabavi S. M. Melatonin and respiratory diseases: a review. Current Topics in Medicinal Chemistry. 2017;17:467–488. doi: 10.2174/1568026616666160824120338.
    1. Park H. J., Kim H. J., Ra J., et al. Melatonin inhibits lipopolysaccharide-induced CC chemokine subfamily gene expression in human peripheral blood mononuclear cells in a microarray analysis. Journal of Pineal Research. 2007;43:121–129. doi: 10.1111/j.1600-079X.2007.00452.x.
    1. Yu G. M., Kubota H., Okita M., Maeda T. The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells. PLoS One. 2017;12(5, article e0178525) doi: 10.1371/journal.pone.0178525.
    1. Carrillo-Vico A., García-Mauriño S., Calvo J. R., Guerrero J. M. Melatonin counteracts the inhibitory effect of PGE2 on IL-2 production in human lymphocytes via its mt1 membrane receptor. The FASEB Journal. 2003;17:755–757. doi: 10.1096/fj.02-0501fje.
    1. Cuzzocrea S., Misko T. P., Costantino G., et al. Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. The FASEB Journal. 2000;14:1061–1072.
    1. Cuzzocrea S., Reiter R. J. Pharmacological actions of melatonin in acute and chronic inflammation. Current Topics in Medicinal Chemistry. 2002;2:153–165. doi: 10.2174/1568026023394425.
    1. Bertuglia S., Marchiafa P. L., Colantuoni A. Melatonin prevents ischemia reperfusion injury in the hamster cheek pouch. Cardiovascular Research. 1996;31:947–952. doi: 10.1016/s0008-6363(96)00030-2.
    1. Lloyd J. K. The importance of vitamin E in human nutrition. Acta Paediatrica Scandinavica. 1990;79:6–11. doi: 10.1111/j.1651-2227.1990.tb11322.x.
    1. Espino J., Pariente J. A., Rodríguez A. B. Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxidative Medicine and Cellular Longevity. 2012;2012:9. doi: 10.1155/2012/670294.670294
    1. Ghosh A. K., Naaz S., Bhattacharjee B., et al. Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry. Life Sciences. 2017;180:123–136. doi: 10.1016/j.lfs.2017.05.022.
    1. Reiter R. J., Mayo J. C., Tan D. X., Sainz R. M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research. 2016;61:253–278. doi: 10.1111/jpi.12360.
    1. Tan D. X., Manchester L. C., Esteban-Zubero E., Zhou Z., Reiter R. J. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules. 2015;20:18886–18906. doi: 10.3390/molecules201018886.
    1. Zhou J., Zhang S., Zhao X., Wei T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-β1-42. Journal of Pineal Research. 2008;45:157–165. doi: 10.1111/j.1600-079X.2008.00570.x.
    1. Maldonado M. D., Mora-Santos M., Naji L., Carrascosa-Salmoral M. P., Naranjo M. C., Calvo J. R. Evidence of melatonin synthesis and release by mast cells. Possible modulatory role on inflammation. Pharmacological Research. 2010;62:282–287. doi: 10.1016/j.phrs.2009.11.014.
    1. Esposito E., Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Current Neuropharmacology. 2010;8:228–242. doi: 10.2174/157015910792246155.
    1. De Ciuceis C., Amiri F., Brassard P., Endemann D. H., Touyz R. M., Schiffrin E. L. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:2106–2113. doi: 10.1161/01.ATV.0000181743.28028.57.
    1. Franceschi C., Bonafe M., Valensin S., et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences. 2000;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Baylis D., Bartlett D. B., Patel H. P., Roberts H. C. Understanding how we age: insights into inflammaging. Longevity & Healthspan. 2013;2:p. 8. doi: 10.1186/2046-2395-2-8.
    1. Volt H., García J. A., Doerrier C., et al. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. Journal of Pineal Research. 2016;60:193–205. doi: 10.1111/jpi.12303.
    1. Cannizzo E. S., Clement C. C., Sahu R., Follo C., Santambrogio L. Oxidative stress, inflammaging and immunosenescence. Journal of Proteomics. 2011;74:2313–2323. doi: 10.1016/j.jprot.2011.06.005.
    1. Alegre F., Pelegrin P., Feldstein A. E. Inflammasomes in liver fibrosis. Seminars in Liver Disease. 2017;37:119–127. doi: 10.1055/s-0037-1601350.
    1. Fenini G., Contassot E., French L. E. Potential of IL-1, IL-18 and inflammasome inhibition for the treatment of inflammatory skin diseases. Frontiers in Pharmacology. 2017;8:p. 278. doi: 10.3389/fphar.2017.00278.
    1. Lamkanfi M., Dixit V. M. Inflammasomes and their roles in health and disease. Annual Review of Cell and Developmental Biology. 2012;28:137–161. doi: 10.1146/annurev-cellbio-101011-155745.
    1. Vandanmagsar B., Youm Y. H., Ravussin A., et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine. 2011;17:179–188. doi: 10.1038/nm.2279.
    1. Conforti-Andreoni C., Ricciardi-Castagnoli P., Mortellaro A. The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cellular & Molecular Immunology. 2011;8:135–145. doi: 10.1038/cmi.2010.81.
    1. Kayagaki N., Warming S., Lamkanfi M., et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117–121. doi: 10.1038/nature10558.
    1. Martinon F., Burns K., Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Molecular Cell. 2002;10:417–426. doi: 10.1016/S1097-2765(02)00599-3.
    1. Dinarello C. A. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612.
    1. Sims J. E., Smith D. E. The IL-1 family: regulators of immunity. Nature Reviews Immunology. 2010;10:89–102. doi: 10.1038/nri2691.
    1. Man S. M., Karki R., Kanneganti T. D. DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota. Pathogens and Disease. 2016;74, article ftw028 doi: 10.1093/femspd/ftw028.
    1. Bracey N. A., Duff H. J., Muruve D. A. Hierarchical regulation of wound healing by NOD-like receptors in cardiovascular disease. Antioxidants & Redox Signaling. 2015;22:1176–1187. doi: 10.1089/ars.2014.6125.
    1. Liu P., Xie Q., Wei T., Chen Y., Chen H., Shen W. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochemical and Biophysical Research Communications. 2015;468:319–325. doi: 10.1016/j.bbrc.2015.10.105.
    1. Martinon F., Mayor A., Tschopp J. The inflammasomes: guardians of the body. Annual Review of Immunology. 2009;27:229–265. doi: 10.1146/annurev.immunol.021908.132715.
    1. Zhou R., Yazdi A. S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–225. doi: 10.1038/nature09663.
    1. Latz E., Xiao T. S., Stutz A. Activation and regulation of the inflammasomes. Nature Reviews Immunology. 2013;13:397–411. doi: 10.1038/nri3452.
    1. Man S. M., Kanneganti T. D. Regulation of inflammasome activation. Immunological Reviews. 2015;265:6–21. doi: 10.1111/imr.12296.
    1. Lee S., Suh G. Y., Ryter S. W., Choi A. M. Regulation and function of the nucleotide binding domain Leucine-rich repeat-containing receptor, pyrin domain-containing-3 inflammasome in lung disease. American Journal of Respiratory Cell and Molecular Biology. 2016;54:151–160. doi: 10.1165/rcmb.2015-0231TR.
    1. Hirota S. A., Ng J., Lueng A., et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflammatory Bowel Diseases. 2011;17:1359–1372. doi: 10.1002/ibd.21478.
    1. Tschopp J., Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nature Reviews Immunology. 2010;10:210–215. doi: 10.1038/nri2725.
    1. Wen H., Ting J. P., O’Neill L. A. A role for the NLRP3 inflammasome in metabolic diseases: did Warburg miss inflammation? Nature Immunology. 2012;13:352–357. doi: 10.1038/ni.2228.
    1. Kim S., Joe Y., Jeong S. O., et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways. Innate Immunity. 2014;20:799–815. doi: 10.1177/1753425913508593.
    1. Krishnan S. M., Dowling J. K., Ling Y. H., et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. British Journal of Pharmacology. 2016;173:752–765. doi: 10.1111/bph.13230.
    1. Afrasyab A., Qu P., Zhao Y., et al. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart and Vessels. 2016;31:1218–1229. doi: 10.1007/s00380-015-0723-8.
    1. Zhang Y., Li X., Grailer J. J., et al. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. Journal of Pineal Research. 2016;60:405–414. doi: 10.1111/jpi.12322.
    1. Coll R. C., Robertson A. A., Chae J. J., et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine. 2015;21:248–255. doi: 10.1038/nm.3806.
    1. Mei S. H., McCarter S. D., Deng Y., Parker C. H., Liles W. C., Stewart D. J. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Medicine. 2007;4, article e269 doi: 10.1371/journal.pmed.0040269.
    1. Grailer J. J., Canning B. A., Kalbitz M., et al. Critical role for the NLRP3 inflammasome during acute lung injury. Journal of Immunology. 2014;192:5974–5983. doi: 10.4049/jimmunol.1400368.
    1. Fernández-Gil B., Moneim A. E., Ortiz F., et al. Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS One. 2017;12(4, article e0174474) doi: 10.1371/journal.pone.0174474.
    1. Ortiz F., Acuña-Castroviejo D., Doerrier C., et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. Journal of Pineal Research. 2015;58:34–49. doi: 10.1111/jpi.12191.
    1. Henao-Mejia J., Elinav E., Thaiss C. A., Flavell R. A. Inflammasomes and metabolic disease. Annual Review of Physiology. 2014;76:57–78. doi: 10.1146/annurev-physiol-021113-170324.
    1. Horng T., Hotamisligil G. S. Linking the inflammasome to obesity-related disease. Nature Medicine. 2011;17:164–165. doi: 10.1038/nm0211-164.
    1. Liu Z., Gan L., Xu Y., et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. Journal of Pineal Research. 2017;63(1) doi: 10.1111/jpi.12414.
    1. Murphy A. J., Kraakman M. J., Kammoun H. L., et al. IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metabolism. 2016;23:155–164. doi: 10.1016/j.cmet.2015.09.024.
    1. Giordano A., Murano I., Mondini E., et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. Journal of Lipid Research. 2013;54:2423–2436. doi: 10.1194/jlr.M038638.
    1. García J. A., Volt H., Venegas C., et al. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. The FASEB Journal. 2015;29:3863–3875. doi: 10.1096/fj.15-273656.
    1. Escames G., Acuña-Castroviejo D., López L. C., et al. Pharmacological utility of melatonin in the treatment of septic shock: experimental and clinical evidence. The Journal of Pharmacy and Pharmacology. 2006;58:1153–1165. doi: 10.1211/jpp.58.9.0001.
    1. Radogna F., Diederich M., Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochemical Pharmacology. 2010;80:1844–1852. doi: 10.1016/j.bcp.2010.07.041.
    1. Rahim I., Djerdjouri B., Sayed R. K., et al. Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis. Journal of Pineal Research. 2017;62(1) doi: 10.1111/jpi.12410.
    1. López A., García J. A., Escames G., et al. Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. Journal of Pineal Research. 2009;46:188–198. doi: 10.1111/j.1600-079X.2008.00647.x.
    1. Martín M., Macías M., Escames G., León J., Acuña-Castroviejo D. Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl-hydroperoxide-induced mitochondrial oxidative stress. The FASEB Journal. 2000;14:1677–1679. doi: 10.1096/fj.99-0865fje.
    1. Wree A., McGeough M. D., Peña C. A., et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. Journal of Molecular Medicine (Berlin, Germany) 2014;92:1069–1082. doi: 10.1007/s00109-014-1170-1.
    1. An R., Zhao L., Xi C., et al. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Research in Cardiology. 2016;111:p. 8. doi: 10.1007/s00395-015-0526-1.
    1. Escames G., López L. C., Ortiz F., et al. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. The FEBS Journal. 2007;274:2135–2147. doi: 10.1111/j.1742-4658.2007.05755.x.
    1. Acuña-Castroviejo D., Carretero M., Doerrier C., et al. Melatonin protects lung mitochondria from aging. Age (Dordrecht, Netherlands) 2012;34:681–692. doi: 10.1007/s11357-011-9267-8.
    1. Carretero M., Escames G., López L. C., et al. Long-term melatonin administration protects brain mitochondria from aging. Journal of Pineal Research. 2009;47:192–200. doi: 10.1111/j.1600-079X.2009.00700.x.
    1. Rodríguez M. I., Carretero M., Escames G., et al. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radical Research. 2007;41:15–24. doi: 10.1080/10715760600936359.
    1. Rodriguez M. I., Escames G., López L. C., et al. Melatonin administration prevents cardiac and diaphragmatic mitochondrial oxidative damage in senescence-accelerated mice. The Journal of Endocrinology. 2007;194:637–643. doi: 10.1677/JOE-07-0260.
    1. Rodríguez M. I., Escames G., López L. C., et al. Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. Journal of Pineal Research. 2007;42:272–279. doi: 10.1111/j.1600-079X.2006.00416.x.
    1. Bubenik G. A., Konturek S. J. Melatonin and aging: prospects for human treatment. Journal of Physiology and Pharmacology. 2011;62:13–19.
    1. Cao Z., Fang Y., Lu Y., et al. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. Journal of Pineal Research. 2017;62 doi: 10.1111/jpi.12389.
    1. Jarup L., Akesson A. Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology. 2009;238:201–208. doi: 10.1016/j.taap.2009.04.020.
    1. Park M. J., Kim D. I., Lim S. K., et al. Thioredoxin-interacting protein mediates hepatic lipogenesis and inflammation via PRMT1 and PGC-1α regulation in vitro and in vivo. Journal of Hepatology. 2014;61:1151–1157. doi: 10.1016/j.jhep.2014.06.032.
    1. Yang Z., Zhong L., Xian R., Yuan B. MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage. Molecular Immunology. 2015;65:267–276. doi: 10.1016/j.molimm.2014.12.018.
    1. Yang F., Wang Z., Wei X., et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. Journal of Cerebral Blood Flow and Metabolism. 2014;34:660–667. doi: 10.1038/jcbfm.2013.242.
    1. Geldhoff M., Mook-Kanamori B. B., Brouwer M. C., et al. Inflammasome activation mediates inflammation and outcome in humans and mice with pneumococcal meningitis. BMC Infectious Diseases. 2013;13:p. 358. doi: 10.1186/1471-2334-13-358.
    1. Wang L., Zhai Y. Q., Xu L. L., et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Experimental Neurology. 2014;251:22–29. doi: 10.1016/j.expneurol.2013.11.001.
    1. Lebeaupin C., Proics E., de Bieville C. H., et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death & Disease. 2015;6, article e1879 doi: 10.1038/cddis.2015.248.
    1. Li Y., Yang Y., Feng Y., et al. A review of melatonin in hepatic ischemia/reperfusion injury and clinical liver disease. Annals of Medicine. 2014;46:503–511. doi: 10.3109/07853890.2014.934275.
    1. Yang Y., Sun Y., Yi W., et al. A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. Journal of Pineal Research. 2014;57:357–366. doi: 10.1111/jpi.12175.
    1. Shim D. W., Shin H. J., Han J. W., et al. A novel synthetic derivative of melatonin, 5-hydroxy-2′-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation. Toxicology and Applied Pharmacology. 2015;284:227–235. doi: 10.1016/j.taap.2015.02.006.

Source: PubMed

3
Abonnere