Histone H3 lysine 27 acetylation profile undergoes two global shifts in undernourished children and suggests altered one-carbon metabolism

Kristyna Kupkova, Savera J Shetty, Rashidul Haque, William A Petri Jr, David T Auble, Kristyna Kupkova, Savera J Shetty, Rashidul Haque, William A Petri Jr, David T Auble

Abstract

Background: Stunting is a condition in which a child does not reach their full growth potential due to chronic undernutrition. It arises during the first 2 years of a child's life and is associated with developmental deficiencies and life-long health problems. Current interventions provide some benefit, but new approaches to prevention and treatment grounded in a molecular understanding of stunting are needed. Epigenetic analyses are critical as they can provide insight into how signals from a poor environment lead to changes in cell function.

Results: Here we profiled histone H3 acetylation on lysine 27 (H3K27ac) in peripheral blood mononuclear cells (PBMCs) of 18-week-old (n = 14) and 1-year-old children (n = 22) living in an urban slum in Dhaka, Bangladesh. We show that 18-week-old children destined to become stunted have elevated levels of H3K27ac overall, functional analysis of which indicates activation of the immune system and stress response pathways as a primary response to a poor environment with high pathogen load. Conversely, overt stunting at 1-year-of age is associated with globally reduced H3K27ac that is indicative of metabolic rewiring and downregulation of the immune system and DNA repair pathways that are likely secondary responses to chronic exposure to a poor environment with limited nutrients. Among processes altered in 1-year-old children, we identified one-carbon metabolism, the significance of which is supported by integrative analysis with results from histone H3 trimethylation on lysine 4 (H3K4me3). Together, these results suggest altered one-carbon metabolism in this population of stunted children.

Conclusions: The epigenomes of stunted children undergo two global changes in H3K27ac within their first year of life, which are associated with probable initial hyperactive immune responses followed by reduced metabolic capacity. Limitation of one-carbon metabolites may play a key role in the development of stunting. Trial registration ClinicalTrials.gov NCT01375647. Registered 17 June 2011, retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT01375647 .

Keywords: Epigenetics; Histone acetylation; One-carbon metabolism; Stunting; Undernutrition.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Vicious cycle of chronic undernutrition. Multiple factors contribute to chronic undernutrition in children. Enteric infections (with or without diarrhea) are key determinants of a child’s nutritional status, as they often lead to gut dysfunction with accompanying health issues listed in the figure. An optimal time for intervention is from conception until 2 years of age, a crucial time in child development [2]. A stunted child faces a high risk of life-long health consequences, which may be passed on to the next generation through poorly understood mechanisms. Health problems associated with the introduction of high calorie diet are marked with an asterisk. T2D type 2 diabetes, CVD cardiovascular diseases
Fig. 2
Fig. 2
The H3K27ac landscape undergoes global changes in stunted children within their first year of life. a Overview of the experimental design. Each line in the plot with HAZ scores represents the change of HAZ score from birth to 1 year of age for a child whose PBMC sample was used for the study. The left panel shows HAZ scores for 18-week-old children (n = 14), the right panel for 1-year-old children (n = 22). Red dots indicate HAZ <  − 2 at a given age. Lines are colored based on ΔHAZ between birth and 18 weeks or between birth and 1 year. Bottom panel illustrates three different scenarios for differential analysis in which blue regions are downregulated in stunting, grey regions unchanged or with no significant trend; and red regions are upregulated in stunted children. b MA-plot shows changes in H3K27ac regions in 18-week-old children as the ΔHAZ (18 wk) score increases. Each dot is an H3K27ac region, the x-axis represents the mean read coverage over the region, and the y-axis indicates the log2(fold-change) of read coverage per unit increase of ΔHAZ (18 wk) score. Colored dots indicate significantly affected regions with false discovery rate (FDR) corrected p value < 0.05. c Same as b for 1-year-old children. d Alluvial plot showing changes to log2(fold-change) of corresponding regions between 18 weeks and 1 year. “Up”/“down”—H3K27ac levels are increased/decreased, accordingly, with higher risk of stunting at a given age, “not-present”—region was not identified at the given age
Fig. 3
Fig. 3
Functional annotation of genes associated with significantly upregulated H3K27ac regions in 18-week-old stunted children. a Genome browser snapshot of H3K27ac signal tracks showing a representative region in which the normalized coverage increased with decreasing ΔHAZ (18 wk) score, i.e. H3K27ac was higher in stunted children. The color of individual signal tracks corresponds to the ΔHAZ (18 wk) scores. Genes associated with the highlighted region are labeled. b Biological terms (databases: GO biological process, KEGG, Rectome, WikiPathways) that were significantly enriched for genes associated with differential H3K27ac regions in 18-week-old children. Each node is a biological term, the node size corresponds to the term size, the node color indicates the significance of enrichment (bright orange: low q-value, light orange: higher q-value, all q-values < 0.05), and the edges are based on the number of genes shared between terms. Groups of terms were manually organized in different colored clusters with the summary term for the cluster shown in the label with the same color. c Gene network constructed with STRING (see “Methods” section) using genes found in the highlighted biological terms in b. Red genes belong to the “viral processes” GO term
Fig. 4
Fig. 4
Functional annotation of genes associated with significantly downregulated H3K27ac regions in 1-year-old stunted children. a Genome browser screenshot showing a representative region in 1-year-old children in which read coverage decreased with decreasing ΔHAZ (1 year) score, i.e. H3K27ac was lower in stunted children. Track colors correspond to the child’s ΔHAZ (1 year) score. Genes associated with the region are labeled. b Network of biological terms as in Fig. 3b applied on data from 1-year-old children. c Genes from highlighted biological terms in b are shown in a pathway diagram. PPP pentose phosphate pathway, SSP serine synthesis pathway
Fig. 5
Fig. 5
Integrative analysis of H3K27ac and H3K4me3 in 1-year-old stunted children. a Overview of the “gene-centric” approach in which each differential H3K27ac and H3K4me3 region was assigned to its target gene(s). Only genes predicted to be regulated by both H3K27ac and H3K4me3 were functionally annotated. b, d Venn diagrams show overlap of genes regulated by H3K27ac regions that were downregulated in stunting (red circle), and H3K4me3 regions that were downregulated (blue circle) and upregulated (grey circle) in stunting respectively. c, e Networks of biological terms as in Fig. 3b generated for overlapping genes from b, and d respectively. The color code of network edges corresponds to the color code of H3K4me3 circles in the associated Venn diagrams. f Overview of the “region-centric” approach. Significantly affected H3K27ac regions that overlap significantly affected H3K4me3 regions were assigned to target genes, which were functionally annotated. g, h Venn diagrams showing intersections of significantly downregulated H3K27ac regions (red circle) in stunting with significantly downregulated (blue circle) or upregulated (grey circle) H3K4me3 regions in stunting. i Pathway enrichment of genes associated with overlapping regions from g, h. Bars are color-coded accordingly with H3K4me3 circles in Venn diagrams
Fig. 6
Fig. 6
Working model depicting changes to the epigenetic landscape in stunting. The model highlights changes to H3K27ac and H3K4me3 landscapes in 18-week-old and 1-year-old children as they become more severely stunted, along with biological terms associated with these changes

References

    1. World Health Organization . Reducing stunting in children: equity considerations for achieving the global targets 2025. Geneva: WHO; 2018.
    1. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427. doi: 10.1016/S0140-6736(13)60937-X.
    1. Humphrey JH. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet. 2009;374:1032–1035. doi: 10.1016/S0140-6736(09)60950-8.
    1. Dicker D, Nguyen G, Abate D, Abate KH, Abay SM, Abbafati C, et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1684–1735. doi: 10.1016/S0140-6736(18)31891-9.
    1. United Nations Children’s Fund (UNICEF), World Health Organization, International Bank for Reconstruction and Development/The World Bank . Levels and trends in child malnutrition: key findings of the 2020 edition of the Joint Child Malnutrition Estimates. 2020. Geneva: World Health Organization; 2020.
    1. Bourke CD, Jones KDJ, Prendergast AJ. Current understanding of innate immune cell dysfunction in childhood undernutrition. Front Immunol. 2019;10:1728. doi: 10.3389/fimmu.2019.01728.
    1. Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, et al. What works? Interventions for maternal and child undernutrition and survival. Lancet. 2008;371:417–440. doi: 10.1016/S0140-6736(07)61693-6.
    1. Prendergast AJ, Humphrey JH. The stunting syndrome in developing countries. Paediatr Int Child Health. 2014;34:250–265. doi: 10.1179/2046905514Y.0000000158.
    1. Guerrant RL, Deboer MD, Moore SR, Scharf RJ, Lima AAM. The impoverished gut—a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol. 2013;10(4):220–229. doi: 10.1038/nrgastro.2012.239.
    1. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369(9555):60–70. doi: 10.1016/S0140-6736(07)60032-4.
    1. Guerrant RL, Oriá RB, Moore SR, Oriá MOB, Lima AAAM. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev. 2008;66(9):487–505. doi: 10.1111/j.1753-4887.2008.00082.x.
    1. Raman AS, Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Subramanian S, et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science (80-) 2019;365:eaau4735. doi: 10.1126/science.aau4735.
    1. Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science (80-) 2019;365:eaau4732. doi: 10.1126/science.aau4732.
    1. WHO . Global targets 2025. Glob targets 2025. Geneva: WHO; 2014.
    1. Goudet SM, Bogin BA, Madise NJ, Griffiths PL. Nutritional interventions for preventing stunting in children (Birth to 59 months) living in urban slums in low-and middle-income countries (LMIC) Cochrane Database Syst Rev. 2019;6(6):CD011695.
    1. Dai Z, Ramesh V, Locasale JW. The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet. 2020;21:737–753. doi: 10.1038/s41576-020-0270-8.
    1. Uchiyama R, Kupkova K, Shetty SJ, Linford AS, Pray-Grant MG, Wagar LE, et al. Histone H3 lysine 4 methylation signature associated with human undernutrition. Proc Natl Acad Sci U S A. 2018;115(48):E11264–E11273. doi: 10.1073/pnas.1722125115.
    1. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–21936. doi: 10.1073/pnas.1016071107.
    1. Kirkpatrick BD, Colgate ER, Mychaleckyj JC, Haque R, Dickson DM, Carmolli MP, et al. The “Performance of Rotavirus and Oral Polio Vaccines in Developing Countries” (PROVIDE) study: description of methods of an interventional study designed to explore complex biologic problems. Am J Trop Med Hyg. 2015;92(4):744–751. doi: 10.4269/ajtmh.14-0518.
    1. Paauw ND, Lely AT, Joles JA, Franx A, Nikkels PG, Mokry M, et al. H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction. Clin Epigenetics. 2018;10(1):85. doi: 10.1186/s13148-018-0508-x.
    1. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455–461. doi: 10.1038/nature12787.
    1. Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol. 2019;20:766–784. doi: 10.1038/s41580-019-0169-4.
    1. Guerrant RL, Deboer MD, Moore SR, Scharf RJ, Lima AAM. The impoverished gut—a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol. 2013;10:220–229. doi: 10.1038/nrgastro.2012.239.
    1. Weitzman MD, Weitzman JB. What’s the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe. 2014;15:283–294. doi: 10.1016/j.chom.2014.02.010.
    1. Tamburri S, Lavarone E, Fernández-Pérez D, Conway E, Zanotti M, Manganaro D, et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol Cell. 2020;77(4):840–856.e5. doi: 10.1016/j.molcel.2019.11.021.
    1. Pekowska A, Benoukraf T, Ferrier P, Spicuglia S. A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res. 2010;20(11):1493–1502. doi: 10.1101/gr.109389.110.
    1. Wang S, Meyer DH, Schumacher B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat Struct Mol Biol. 2020;27(12):1165–1177. doi: 10.1038/s41594-020-00513-1.
    1. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–499. doi: 10.1038/nri3862.
    1. Watanabe S, Watanabe K, Akimov V, Bartkova J, Blagoev B, Lukas J, et al. JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks. Nat Struct Mol Biol. 2013;20(12):1425–1433. doi: 10.1038/nsmb.2702.
    1. MM Hasan, SM Fahim, S Das, MA Gazi, M Mahfuz, T Ahmed. Association of plasma low-density lipoprotein receptor-related protein-1 (LRP1) with undernutrition: a case-control study in Bangladeshi adults. Biomarkers. 2021;1–7.
    1. Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science (80-) 2014;345(6204):1251086. doi: 10.1126/science.1251086.
    1. Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R, Megchelenbrink W, et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell. 2016;167(5):1354–1368.e14. doi: 10.1016/j.cell.2016.09.034.
    1. Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos. 2000;88(1):87–98. doi: 10.1034/j.1600-0706.2000.880110.x.
    1. Kedia-Mehta N, Finlay DK. Competition for nutrients and its role in controlling immune responses. Nat Commun. 2019;10:1–8. doi: 10.1038/s41467-019-10015-4.
    1. Bourke CD, Berkley JA, Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 2016;37:386–398. doi: 10.1016/j.it.2016.04.003.
    1. Nakad R, Schumacher B. DNA damage response and immune defense: links and mechanisms. Front Genet. 2016;7:147. doi: 10.3389/fgene.2016.00147.
    1. Barzilai A, Yamamoto KI. DNA damage responses to oxidative stress. DNA Repair (Amsterdam) 2004;3:1109–1115. doi: 10.1016/j.dnarep.2004.03.002.
    1. Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 2015;22(5):861–873. doi: 10.1016/j.cmet.2015.08.024.
    1. Semba RD, Shardell M, Sakr Ashour FA, Moaddel R, Trehan I, Maleta KM, et al. Child stunting is associated with low circulating essential amino acids. EBioMedicine. 2016;1(6):246–252. doi: 10.1016/j.ebiom.2016.02.030.
    1. Schulze KV, Swaminathan S, Howell S, Jajoo A, Lie NC, Brown O, et al. Edematous severe acute malnutrition is characterized by hypomethylation of DNA. Nat Commun. 2019;10(1):1–13. doi: 10.1038/s41467-019-13433-6.
    1. James P, Sajjadi S, Tomar AS, Saffari A, Fall CHD, Prentice AM, et al. Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism. Int J Epidemiol. 2018;47(6):1910–1937.
    1. James PT, Dominguez-Salas P, Hennig BJ, Moore SE, Prentice AM, Silver MJ. Maternal one-carbon metabolism and infant DNA methylation between contrasting seasonal environments: a case study from The Gambia. Curr Dev Nutr. 2019;3(1):nzy082. doi: 10.1093/cdn/nzy082.
    1. Yajnik CS, Deshmukh US. Fetal programming: maternal nutrition and role of one-carbon metabolism. Rev Endocr Metab Disord. 2012;13(2):121–127. doi: 10.1007/s11154-012-9214-8.
    1. Semba RD, Moench-Pfanner R, Sun K, de Pee S, Akhter N, Rah JH, et al. Consumption of micronutrient-fortified milk and noodles is associated with lower risk of stunting in preschool-aged children in Indonesia. Food Nutr Bull. 2011;32(4):347–353. doi: 10.1177/156482651103200406.
    1. Kvestad I, McCann A, Chandyo RK, Giil LM, Shrestha M, Ulak M, et al. One-carbon metabolism in Nepalese infant–mother pairs and child cognition at 5 years old. J Nutr. 2021;151(4):883–891. doi: 10.1093/jn/nxaa403.
    1. Strand TA, Taneja S, Kumar T, Manger MS, Refsum H, Yajnik CS, et al. Vitamin B-12, folic acid, and growth in 6- to 30-Month-old children: a randomized controlled trial. Pediatrics. 2015;135(4):e918–e926. doi: 10.1542/peds.2014-1848.
    1. Le Douce J, Maugard M, Veran J, Matos M, Jégo P, Vigneron PA, et al. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab. 2020;31(3):503–517.e8. doi: 10.1016/j.cmet.2020.02.004.
    1. Enriquez-Hesles E, Smith DL, Maqani N, Wierman MB, Sutcliffe MD, Fine RD, et al. A cell non-autonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. J Biol Chem. 2020;296:100125. doi: 10.1074/jbc.RA120.015402.
    1. Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science (80-) 2021;371(6527):405–410. doi: 10.1126/science.abb2683.
    1. Niiya T, Akbar SMF, Yoshida O, Miyake T, Matsuura B, Murakami H, et al. Impaired dendritic cell function resulting from chronic undernutrition disrupts the antigen-specific immune response in mice. J Nutr. 2007;137(3):671–675. doi: 10.1093/jn/137.3.671.
    1. Prendergast AJ, Rukobo S, Chasekwa B, Mutasa K, Ntozini R, Mbuya MNN, et al. Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS ONE. 2014;9(2):e86928. doi: 10.1371/journal.pone.0086928.
    1. Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F, Canella D, et al. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res. 2014;24(7):1157–1168. doi: 10.1101/gr.168260.113.
    1. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923.
    1. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352.
    1. Amemiya HM, Kundaje A, Boyle AP. The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep. 2019;9(1):9354. doi: 10.1038/s41598-019-45839-z.
    1. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033.
    1. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available from .
    1. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–3048. doi: 10.1093/bioinformatics/btw354.
    1. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS) Genome Biol. 2008;9(9):R137. doi: 10.1186/gb-2008-9-9-r137.
    1. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153(2):320–334. doi: 10.1016/j.cell.2013.03.036.
    1. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–319. doi: 10.1016/j.cell.2013.03.035.
    1. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–192. doi: 10.1093/bib/bbs017.
    1. Stolarczyk M, Reuter VP, Smith JP, Magee NE, Sheffield NC. Refgenie: a reference genome resource manager. Gigascience. 2020;9(2):giz149. doi: 10.1093/gigascience/giz149.
    1. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics. 2010;26(17):2204–2207. doi: 10.1093/bioinformatics/btq351.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
    1. Brunson J. ggalluvial: layered grammar for alluvial plots. J Open Source Softw. 2020;5(49):2017. doi: 10.21105/joss.02017.
    1. Gao T, Qian J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020;48(D1):D58–D64. doi: 10.1093/nar/gkz829.
    1. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14(2):482–517. doi: 10.1038/s41596-018-0103-9.
    1. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47(W1):W191–W198. doi: 10.1093/nar/gkz369.
    1. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE. 2010;5(11):e13984. doi: 10.1371/journal.pone.0013984.
    1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303.
    1. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi: 10.1093/nar/gky1131.
    1. Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. Bioinformatics. 2016;32(4):587–589. doi: 10.1093/bioinformatics/btv612.
    1. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome data browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45(D1):D658–D662. doi: 10.1093/nar/gkw983.
    1. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome data browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47(D1):D729–D735. doi: 10.1093/nar/gky1094.
    1. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al. The UCSC genome browser database: update 2006. Nucleic Acids Res. 2006;34(Database issue):D590. doi: 10.1093/nar/gkj144.
    1. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. DeepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42(W1):W187. doi: 10.1093/nar/gku365.
    1. Kupkova K, Verdezoto J, Smith JP, Stolarczyk M, Danehy T, Lawson JT, et al. GenomicDistributions: fast analysis of genomic intervals with bioconductor. 2020. Available from .
    1. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501. doi: 10.1038/nbt.1630.
    1. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011;12(1):35. doi: 10.1186/1471-2105-12-35.
    1. BioRender. [Cited 2021 Feb 18]. Available from .
    1. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4(43):1686. doi: 10.21105/joss.01686.
    1. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9(8):e1003118. doi: 10.1371/journal.pcbi.1003118.
    1. Harrell FEJ, Dupont C. Hmisc: Harrell miscellaneous. 2021.
    1. Kassambara A. ggpubr: “ggplot2” based publication ready plots. 2020.
    1. Jeppson H, Hofmann H, Cook D. ggmosaic: mosaic plots in the “ggplot2” framework. R package version 0.2.0. 2021.
    1. Petukhov V, van den Brand T, Biederstedt E. ggrastr: Raster Layers for “ggplot2”. R package version 0.2.1. 2021. Available from .

Source: PubMed

3
Abonnere