The genetics of smoking in individuals with chronic obstructive pulmonary disease

Ma'en Obeidat, Guohai Zhou, Xuan Li, Nadia N Hansel, Nicholas Rafaels, Rasika Mathias, Ingo Ruczinski, Terri H Beaty, Kathleen C Barnes, Peter D Paré, Don D Sin, Ma'en Obeidat, Guohai Zhou, Xuan Li, Nadia N Hansel, Nicholas Rafaels, Rasika Mathias, Ingo Ruczinski, Terri H Beaty, Kathleen C Barnes, Peter D Paré, Don D Sin

Abstract

Background: Smoking is the principal modifiable environmental risk factor for chronic obstructive pulmonary disease (COPD) which affects 300 million people and is the 3rd leading cause of death worldwide. Most of the genetic studies of smoking have relied on self-reported smoking status which is vulnerable to reporting and recall bias. Using data from the Lung Health Study (LHS), we sought to identify genetic variants associated with quantitative smoking and cessation in individuals with mild to moderate COPD.

Methods: The LHS is a longitudinal multicenter study of mild-to-moderate COPD subjects who were all smokers at recruitment. We performed genome-wide association studies (GWASs) for salivary cotinine (n = 4024), exhaled carbon monoxide (eCO) (n = 2854), cigarettes per day (CPD) (n = 2706) and smoking cessation at year 5 follow-up (n = 717 quitters and 2175 smokers). The GWAS analyses were adjusted for age, gender, and genetic principal components.

Results: For cotinine levels, SNPs near UGT2B10 gene achieved genome-wide significance (i.e. P < 5 × 10- 8) with top SNP rs10023464, P = 1.27 × 10- 11. For eCO levels, one significant SNP was identified which mapped to the CHRNA3 gene (rs12914385, P = 2.38 × 10- 8). A borderline region mapping to KCNMA1 gene was associated with smoking cessation (rs207675, P = 5.95 × 10- 8). Of the identified loci, only the CHRNA3/5 locus showed significant associations with lung function but only in heavy smokers. No regions met genome-wide significance for CPD.

Conclusion: The study demonstrates that using objective measures of smoking such as eCO and/or salivary cotinine can more precisely capture the genetic contribution to multiple aspects of smoking behaviour. The KCNMA1 gene association with smoking cessation may represent a potential therapeutic target and warrants further studies.

Trial registration: The Lung Health Study ClinicalTrials.gov Identifier: NCT00000568 . Date of registration: October 28, 1999.

Keywords: Cessation; Cotinine; GWAS; Smoking; eCO.

Conflict of interest statement

Ethics approval and consent to participate

Work undertaken in this manuscript was approved by the University of British Columbia Institutional Review Board, certificate numberH16–01201.

Consent for publication

Not applicable.

Competing interests

Dr. Sin has received research funding from AstraZeneca (AZ), Merck, Boehringer Ingelheim (BI) and Novartis and has received honorarium for speaking engagements from AZ, Novartis, Regeneron and Sanofi-Aventis.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Overall LHS smoking GWAS study design. eCO: exhaled carbon monoxide. CPD: Cigarettes per day. Y1: year 1. eCO was measured in those reporting current smoking
Fig. 2
Fig. 2
Manhattan plots of smoking GWASs in Lung Health Study. The plots show the P values (−log10 scale) on the Y axes and the SNP positions across 22 autosomal chromosomes on the X axes. The horizontal red line represents the genome-wide cut-off of 5 × 10− 08
Fig. 3
Fig. 3
Region plots of the smoking associated loci. The Y axis represent the P values in the (−log10 scale) and the X axis is the genomic position. Gene names and their corresponding coordinates are shown below. The sentinel SNP is shown as a purple diamond and the color coding of SNPs reflects the degree of linkage disequilibrium (LD) with the sentinel SNP using 1000G reference

References

    1. WHO. Tobacco fact sheet: World Health Organization; 2015. .
    1. Mortality from smoking in developed countries 1950–2020 [].
    1. Jha P, Peto R. Global effects of smoking, of quitting, and of taxing tobacco. N Engl J Med. 2014;370:60–68. doi: 10.1056/NEJMra1308383.
    1. Jha P. Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer. 2009;9:655–664. doi: 10.1038/nrc2703.
    1. Doll R, Peto R. Mortality in relation to smoking: 20 years’ observations on male British doctors. Br Med J. 1976;2:1525–1536. doi: 10.1136/bmj.2.6051.1525.
    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study. Lancet. 2010;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Thorgeirsson TE. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–642. doi: 10.1038/nature06846.
    1. Obeidat ME, Hao K, Bossé Y, Nickle DC, Nie Y, Postma DS, Laviolette M, Sandford AJ, Daley DD, Hogg JC, et al. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet Respir Med. 2015;3:782–795. doi: 10.1016/S2213-2600(15)00380-X.
    1. Hobbs BD, de Jong K, Shrine NRG, Wyss AB, London SJ, Cho M. A genome-wide association study of chronic obstructive pulmonary disease identifies 22 risk loci. Nat Genet. 2017;49:426–432. doi: 10.1038/ng.3752.
    1. Stelmach R, Fernandes FLA, Carvalho-Pinto RM, Athanazio RA, Rached SZ, Prado GF, Cukier A. Comparison between objective measures of smoking and self-reported smoking status in patients with asthma or COPD: are our patients telling us the truth? J Bras Pneumol. 2015;41:124–132. doi: 10.1590/S1806-37132015000004526.
    1. Fendrich M, Mackesy-Amiti ME, Johnson TP, Hubbell A, Wislar JS. Tobacco-reporting validity in an epidemiological drug-use survey. Addict Behav. 2005;30:175–181. doi: 10.1016/j.addbeh.2004.04.009.
    1. Obeidat ME, Ding X, Fishbane N, Hollander Z, Ng RT, McManus B, Tebbutt SJ, Miller BE, Rennard S, Paré PD, Sin DD. The effect of different case definitions of current smoking on the discovery of smoking-related blood gene expression signatures in chronic obstructive pulmonary disease. Nicotine Tob Res. 2016;18:1903–1909. doi: 10.1093/ntr/ntw129.
    1. Jarvis MJ, Russell MA, Saloojee Y. Expired air carbon monoxide: a simple breath test of tobacco smoke intake. Br Med J. 1980;281:484–485. doi: 10.1136/bmj.281.6238.484.
    1. Jatlow P, Toll BA, Leary V, Krishnan-Sarin S, O’Malley SS. Comparison of expired carbon monoxide and plasma cotinine as markers of cigarette abstinence. Drug Alcohol Depend. 2008;98:203–209. doi: 10.1016/j.drugalcdep.2008.05.013.
    1. Sato S, Nishimura K, Koyama H, Tsukino M, Oga T, Hajiro T, Mishima M. Optimal cutoff level of breath carbon monoxide for assessing smoking status in patients with asthma and COPD. Chest. 2003;124:1749–1754. doi: 10.1378/chest.124.5.1749.
    1. Ware JJ, Chen X, Vink J, Loukola A, Minica C, Pool R, Milaneschi Y, Mangino M, Menni C, Chen J, et al. Genome-wide meta-analysis of cotinine levels in cigarette smokers identifies locus at 4q13.2. Sci Rep. 2016;6:20092. doi: 10.1038/srep20092.
    1. Kanner RE, Connett JE, Williams DE, Buist AS. Effects of randomized assignment to a smoking cessation intervention and changes in smoking habits on respiratory symptoms in smokers with early chronic obstructive pulmonary disease: the lung health study. Am J Med. 1999;106:410–416. doi: 10.1016/S0002-9343(99)00056-X.
    1. Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, Conway WA, Jr, Enright PL, Kanner RE, O'Hara P, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The lung health study. JAMA. 1994;272:1497–1505. doi: 10.1001/jama.1994.03520190043033.
    1. Nicholas RA, John EC, Robert PM. Smoking and lung function of lung health study participants after 11 years. Am J Respir Crit Care Med. 2002;166:675–679. doi: 10.1164/rccm.2112096.
    1. Man SF, Connett JE, Anthonisen NR, Wise RA, Tashkin DP, Sin DD. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax. 2006;61:849–853. doi: 10.1136/thx.2006.059808.
    1. Hansel NN, Ruczinski I, Rafaels N, Sin DD, Daley D, Malinina A, Huang L, Sandford A, Murray T, Kim Y, et al. Genome-wide study identifies two loci associated with lung function decline in mild to moderate COPD. Hum Genet. 2013;132:79–90. doi: 10.1007/s00439-012-1219-6.
    1. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–1287. doi: 10.1038/ng.3656.
    1. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–1283. doi: 10.1038/ng.3643.
    1. Murray RP, Connett JE, Lauger GG, Voelker HT. Error in smoking measures: effects of intervention on relations of cotinine and carbon monoxide to self-reported smoking. The lung health study research group. Am J Public Health. 1993;83:1251–1257. doi: 10.2105/AJPH.83.9.1251.
    1. Etter JF, Vu Duc T, Perneger TV. Saliva cotinine levels in smokers and nonsmokers. Am J Epidemiol. 2000;151:251–258. doi: 10.1093/oxfordjournals.aje.a010200.
    1. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–1296. doi: 10.1093/bioinformatics/btm108.
    1. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39:906–913. doi: 10.1038/ng2088.
    1. Consortium” TaG Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42:441–447. doi: 10.1038/ng.571.
    1. Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W, Kong X, Rennard SI, Beaty TH, Hokanson JE, et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax. 2011;66:894–902. doi: 10.1136/thoraxjnl-2011-200154.
    1. The UKKC The UK10K project identifies rare variants in health and disease. Nature. 2015;526:82–90. doi: 10.1038/nature14962.
    1. Wagner AH, Coffman AC, Ainscough BJ, Spies NC, Skidmore ZL, Campbell KM, Krysiak K, Pan D, McMichael JF, Eldred JM, et al. DGIdb 2.0: mining clinically relevant drug–gene interactions. Nucleic Acids Res. 2016;44:D1036–D1044. doi: 10.1093/nar/gkv1165.
    1. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–D672. doi: 10.1093/nar/gkj067.
    1. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42:448–453. doi: 10.1038/ng.573.
    1. Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Artigas MS, Billington CK, Kheirallah AK, Allen R, Cook JP, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK biobank. Lancet Respir Med. 2015;3:769–781. doi: 10.1016/S2213-2600(15)00283-0.
    1. Lutz SM, Hokanson JE. Genetic influences on smoking and clinical disease. Understanding behavioral and biological pathways with mediation analysis. Ann Am Thorac Soc. 2014;11:1082–1083. doi: 10.1513/AnnalsATS.201407-315ED.
    1. Loukola A, Hällfors J, Korhonen T, Kaprio J. Genetics and smoking. Curr Addict Rep. 2014;1:75–82. doi: 10.1007/s40429-013-0006-3.
    1. Hilberink SR, Jacobs JE, van Opstal S, van der Weijden T, Keegstra J, Kempers P, Muris JW, Grol RP, de Vries H. Validation of smoking cessation self-reported by patients with chronic obstructive pulmonary disease. Int J Gen Med. 2011;4:85–90. doi: 10.2147/IJGM.S15231.
    1. Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. In: Henningfield J.E., London E.D., Pogun S. (eds) Nicotine Psychopharmacology. Handbook of Experimental Pharmacology, vol 192. Berlin, Heidelberg: Springer; 2009.
    1. Patel YM, Stram DO, Wilkens LR, Park S-SL, Henderson BE, Marchand LL, Haiman CA, Murphy SE. The contribution of common genetic variation to nicotine and cotinine Glucuronidation in multiple ethnic/racial populations. Cancer Epidemiol Biomarkers Prev. 2015;24:119–127. doi: 10.1158/1055-9965.EPI-14-0815.
    1. Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362:2295–2303. doi: 10.1056/NEJMra0809890.
    1. Zemen BG, Lai MH, Whitt JP, Khan Z, Zhao G, Meredith AL. Generation of Kcnma1(fl)-tdTomato, a conditional deletion of the BK channel α subunit in mouse. Physiol Rep. 2015;3:e12612. doi: 10.14814/phy2.12612.
    1. Bell TJ, Miyashiro KY, Sul J-Y, McCullough R, Buckley PT, Jochems J, Meaney DF, Haydon P, Cantor C, Parsons TD, Eberwine J. Cytoplasmic BK(ca) channel intron-containing mRNAs contribute to the intrinsic excitability of hippocampal neurons. Proc Natl Acad Sci U S A. 2008;105:1901–1906. doi: 10.1073/pnas.0711796105.
    1. Buchhalter AR, Fant RV, Henningfield JE. Novel pharmacological approaches for treating tobacco dependence and withdrawal: current status. Drugs. 2008;68:1067–1088. doi: 10.2165/00003495-200868080-00005.
    1. Polston JE, Cunningham CS, Rodvelt KR, Miller DK. Lobeline augments and inhibits cocaine-induced hyperactivity in rats. Life Sci. 2006;79:981–990. doi: 10.1016/j.lfs.2006.05.006.
    1. Liu YC, Lo YK, Wu SN. Stimulatory effects of chlorzoxazone, a centrally acting muscle relaxant, on large conductance calcium-activated potassium channels in pituitary GH3 cells. Brain Res. 2003;959:86–97. doi: 10.1016/S0006-8993(02)03730-7.
    1. Benowitz NL, Peng M, Jacob P., 3rd Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin Pharmacol Ther. 2003;74:468–474. doi: 10.1016/j.clpt.2003.07.001.
    1. Addolorato G, Leggio L, Hopf FW, Diana M, Bonci A. Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology. 2012;37:163–177. doi: 10.1038/npp.2011.216.
    1. Garcia-Arcos I, Geraghty P, Baumlin N, Campos M, Dabo AJ, Jundi B, Cummins N, Eden E, Grosche A, Salathe M, Foronjy R. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax. 2016;71:1119–1129. doi: 10.1136/thoraxjnl-2015-208039.
    1. Bossé Y, Postma DS, Sin DD, Lamontagne M, Couture C, Gaudreault N, Joubert P, Wong V, Elliott M, van den Berge M, et al. Molecular Signature of Smoking in Human Lung Tissues. Cancer Res. 2012;72:3753–63.
    1. Cadet JL, Brannock C, Krasnova IN, Jayanthi S, Ladenheim B, McCoy MT, Walther D, Godino A, Pirooznia M, Lee RS. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence. Mol Psychiatry. 2017;22:1196–1204. doi: 10.1038/mp.2016.48.

Source: PubMed

3
Abonnere