Effects of low-frequency repetitive transcranial magnetic stimulation in adductor laryngeal dystonia: a safety, feasibility, and pilot study

Cecília N Prudente, Mo Chen, Kaila L Stipancic, Katherine L Marks, Sharyl Samargia-Grivette, George S Goding, Jordan R Green, Teresa J Kimberley, Cecília N Prudente, Mo Chen, Kaila L Stipancic, Katherine L Marks, Sharyl Samargia-Grivette, George S Goding, Jordan R Green, Teresa J Kimberley

Abstract

Purpose: The effects of neuromodulation are virtually unexplored in adductor laryngeal dystonia (AdLD), a disorder characterized by involuntary contraction of intrinsic laryngeal muscles. Recent findings indicated that intracortical inhibition is reduced in people with AdLD. Low-frequency repetitive transcranial magnetic stimulation (rTMS) induces prolonged intracortical inhibition, but the effects in AdLD are unexplored. This pilot and feasibility study aimed to examine the safety, feasibility, and effects of a single session 1 Hz rTMS over the laryngeal motor cortex (LMC) in people with AdLD and healthy individuals.

Methods: The stimulation location was individualized and determined through TMS-evoked responses in the thyroarytenoid muscles using fine-wire electrodes. 1200 pulses of 1 Hz rTMS were delivered to the left LMC in two groups: Control (n = 6) and AdLD (n = 7). Tolerance, adverse effects, intracortical inhibition, and voice recordings were collected immediately before and after rTMS. Voice quality was assessed with acoustic-based and auditory-perceptual measures.

Results: All participants tolerated the procedures, with no unexpected adverse events or worsening of symptoms. No significant effects on intracortical inhibition were observed. In the AdLD group, there was a large-effect size after rTMS in vocal perturbation measures and a small-effect size in decreased phonatory breaks.

Conclusions: One rTMS session over the LMC is safe and feasible, and demonstrated trends of beneficial effects on voice quality and phonatory function in AdLD. These preliminary findings support further investigation to assess clinical benefits in a future randomized sham-controlled trial. CLINICALTRIALS.GOV: NCT02957942, registered on November 8, 2016.

Keywords: Acoustics; Adductor laryngeal dystonia; Cortical silent period; Repetitive transcranial magnetic stimulation; Spasmodic dysphonia.

Conflict of interest statement

All authors declare no conflicts or competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Representative raw EMG data of two participants demonstrating the cortical silent period (cSP) waterfall plot collected before (Pre) and after (Post) a single session of 1 Hz rTMS delivered to the laryngeal motor cortex. Each plot shows all 30 trials from one participant for each group before and after rTMS. AdLD adductor laryngeal dystonia, EMG electromyography, MEP motor-evoked potential
Fig. 2
Fig. 2
Average cortical silent period (cSP) duration for each group at pre- and post-test. There was no significant difference within or between groups. The values for left and right thyroarytenoid muscles were averaged, since there was no significant difference between sides (see text for details). AdLD adductor laryngeal dystonia; ms milliseconds
Fig. 3
Fig. 3
Objective measures of phonatory function for each group at pre- and post-test. AC Jitter, shimmer, and harmonics-to-noise ratio during sustained phonation of the/ɑ/vowel. (D) CPPS results for the sentence “We eat eels everyday” of the Spasmodic Dysphonia Attribute Inventory. AdLD adductor laryngeal dystonia; CPPS smoothed cepstral peak prominence; dB decibels; HNR harmonics-to-noise ratio
Fig. 4
Fig. 4
Pre- and post-rTMS changes in clinician-based voice measures. A Total phonatory breaks during the ten sentences of the Spasmodic Dysphonia Attribute Inventory; B Overall severity ratings on the CAPE-V. The Control group averages are shown for each measure along with the data for individual AdLD participants. AdLD adductor laryngeal dystonia; CAPE-V Consensus auditory-perceptual evaluation of voice

References

    1. Boersma P, Weenink D (2018) Praat: doing phonetics by computer [Computer program]. Version 6.0.43, retrieved 1 July 2019, from
    1. Borich M, Arora S, Kimberley TJ. Lasting effects of repeated rTMS application in focal hand dystonia. Restor Neurol Neurosci. 2009;27(1):55–65. doi: 10.3233/RNN-2009-0461.
    1. Carding PN, Wilson JA, MacKenzie K, Deary IJ. Measuring voice outcomes: state of the science review. J Laryngol Otol. 2009;123(8):823–829. doi: 10.1017/S0022215109005398.
    1. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–1403. doi: 10.1212/wnl.48.5.1398.
    1. Chen M, Summers RL, Goding GS, Samargia S, Ludlow CL, Prudente CN, Kimberley TJ. Evaluation of the cortical silent period of the laryngeal motor cortex in healthy individuals. Front Neurosci. 2017;11:88. doi: 10.3389/fnins.2017.00088.
    1. Chen M, Lixandrão MC, Prudente CN, Summers R, Kimberley TJ. Short interval intracortical inhibition responses to low-frequency repetitive transcranial magnetic stimulation under multiple interstimulus intervals and conditioning intensities. Neuromodulation. 2018;21(4):368–375. doi: 10.1111/ner.12773.
    1. Chen M, Summers R, Prudente CN, Goding GS, Samargia-Grivette S, Ludlow CL, Kimberley TJ. Transcranial magnetic stimulation and functional magnet resonance imaging evaluation of adductor spasmodic dysphonia during phonation. Brain Stimul. 2020;13(3):908–915. doi: 10.1016/j.brs.2020.03.003.
    1. Gerschlager W, Siebner HR, Rothwell JC. Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology. 2001;57(3):449–455. doi: 10.1212/wnl.57.3.449.
    1. Honey CR, Krüger MT, Almeida T, Rammage LA, Tamber MS, Morrison MD, Poologaindran A, Hu A. Thalamic deep brain stimulation for spasmodic dysphonia: a phase I prospective randomized double-blind crossover trial. Neurosurgery. 2021;89(1):45–52. doi: 10.1093/neuros/nyab095.
    1. Huang H, Liu WC, Song YH. Effects of repetitive transcranial magnetic stimulation on masseter motor-neuron pool excitability. Arch Oral Biol. 2017;73:289–294. doi: 10.1016/j.archoralbio.2016.10.015.
    1. Jacobson BH, Johnson A, Grywalski C, Silbergleit A, Jacobson G, Benninger MS, Newman CW. The voice handicap index (VHI): development and validation. Am J Speech Lang Pathol. 1997;6(3):66–70. doi: 10.1044/1058-0360.0603.66.
    1. Kapsner-Smith MR, Hunter EJ, Kirkham K, Cox K, Titze IR. A Randomized controlled trial of two semi-occluded vocal tract voice therapy protocols. J Speech Lang Hear Res. 2015;58(3):535–549. doi: 10.1044/2015_JSLHR-S-13-0231.
    1. Kempster GB, Gerratt BR, Verdolini Abbott K, Barkmeier-Kraemer J, Hillman RE. Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol. Am J Speech Lang Pathol. 2009;18(2):124–132. doi: 10.1044/1058-0360(2008/08-0017).
    1. Khosravani S, Mahnan A, Yeh IL, Aman JE, Watson PJ, Zhang Y, Goding G, Konczak J. Laryngeal vibration as a non-invasive neuromodulation therapy for spasmodic dysphonia. Sci Rep. 2019;9(1):17955. doi: 10.1038/s41598-019-54396-4.
    1. Kimberley TJ, Borich MR, Arora S, Siebner HR. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects. Restor Neurol Neurosci. 2013;31(5):533–542. doi: 10.3233/RNN-120259.
    1. Kimberley TJ, Schmidt RL, Chen M, Dykstra DD, Buetefisch CM. Mixed effectiveness of rTMS and retraining in the treatment of focal hand dystonia. Front Hum Neurosci. 2015;9:385. doi: 10.3389/fnhum.2015.00385.
    1. Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS) Ann Phys Rehabil Med. 2015;58(4):208–213. doi: 10.1016/j.rehab.2015.05.005.
    1. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) Clin Neurophysiol. 2014;125(11):2150–2206. doi: 10.1016/j.clinph.2014.05.021.
    1. Ludlow CL, Adler CH, Berke GS, Bielamowicz SA, Blitzer A, Bressman SB, Hallett M, Jinnah HA, Juergens U, Martin SB, Perlmutter JS, Sapienza C, Singleton A, Tanner CM, Woodson GE. Research priorities in spasmodic dysphonia. Otolaryngol Head Neck Surg. 2008;139(4):495–505. doi: 10.1016/j.otohns.2008.05.624.
    1. Ludlow CL, Domangue R, Sharma D, Jinnah HA, Perlmutter JS, Berke G, Sapienza C, Smith ME, Blumin JH, Kalata CE, Blindauer K, Johns M, Hapner E, Harmon A, Paniello R, Adler CH, Crujido L, Lott DG, Bansberg SF, Barone N, Stebbins G. Consensus-based attributes for identifying patients with spasmodic dysphonia and other voice disorders. JAMA Otolaryngol Head Neck Surg. 2018;144(8):657–665. doi: 10.1001/jamaoto.2018.0644.
    1. Michou E, Raginis-Zborowska A, Watanabe M, Lodhi T, Hamdy S. Repetitive transcranial magnetic stimulation: a novel approach for treating oropharyngeal dysphagia. Curr Gastroenterol Rep. 2016;18(2):10. doi: 10.1007/s11894-015-0483-8.
    1. Patel RR, Awan SN, Barkmeier-Kraemer J, Courey M, Deliyski D, Eadie T, Paul D, Švec JG, Hillman R. Recommended protocols for instrumental assessment of voice: american speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech Lang Pathol. 2018;27(3):887–905. doi: 10.1044/2018_AJSLP-17-0009.
    1. Pirio Richardson S, Altenmüller E, Alter K, Alterman RL, Chen R, Frucht S, Furuya S, Jankovic J, Jinnah HA, Kimberley TJ, Lungu C, Perlmutter JS, Prudente CN, Hallett M. Research priorities in limb and task-specific dystonias. Front Neurol. 2017;8:170. doi: 10.3389/fneur.2017.00170.
    1. Pitman MJ. Treatment of spasmodic dysphonia with a neuromodulating electrical implant. Laryngoscope. 2014;124(11):2537–2543. doi: 10.1002/lary.24749.
    1. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application: an updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. Samargia S, Schmidt R, Kimberley TJ. Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability. Neurosci Lett. 2014;560:12–15. doi: 10.1016/j.neulet.2013.12.007.
    1. Samargia S, Schmidt R, Kimberley TJ. Cortical silent period reveals differences between adductor spasmodic dysphonia and muscle tension dysphonia. Neurorehabil Neural Repair. 2016;30(3):221–232. doi: 10.1177/1545968315591705.
    1. Sapienza CM, Walton S, Murry T. Adductor spasmodic dysphonia and muscular tension dysphonia: acoustic analysis of sustained phonation and reading. J Voice. 2000;14(4):502–520. doi: 10.1016/s0892-1997(00)80008-9.
    1. Simonyan K, Ludlow CL. Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study. Cereb Cortex. 2010;20(11):2749–2759. doi: 10.1093/cercor/bhq023.
    1. Simonyan K, Ludlow CL. Abnormal structure-function relationship in spasmodic dysphonia. Cereb Cortex. 2012;22(2):417–425. doi: 10.1093/cercor/bhr120.
    1. Simonyan K, Barkmeier-Kraemer J, Blitzer A, Hallett M, Houde JF, Jacobson Kimberley T, Ozelius LJ, Pitman MJ, Richardson RM, Sharma N, Tanner K. Laryngeal dystonia: multidisciplinary update on terminology, pathophysiology, and research priorities. Neurology. 2021;96(21):989–1001. doi: 10.1212/WNL.0000000000011922.
    1. Smiljanic R, Gilbert RC. Acoustics of clear and noise-adapted speech in children, young, and older adults. J Speech Lang Hear Res. 2017;60(11):3081–3096. doi: 10.1044/2017_JSLHR-S-16-0130.
    1. Speyer R, Wieneke GH, Dejonckere PH. Documentation of progress in voice therapy: perceptual, acoustic, and laryngostroboscopic findings pretherapy and posttherapy. J Voice. 2004;18(3):325–340. doi: 10.1016/j.jvoice.2003.12.007.
    1. Suppa A, Marsili L, Giovannelli F, Di Stasio F, Rocchi L, Upadhyay N, Ruoppolo G, Cincotta M, Berardelli A. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia. Eur J Neurosci. 2015;42(4):2051–2060. doi: 10.1111/ejn.12977.
    1. Watts CR, Hamilton A, Toles L, Childs L, Mau T. Intervention outcomes of two treatments for muscle tension dysphonia: a randomized controlled trial. J Speech Lang Hear Res. 2019;62(2):272–282. doi: 10.1044/2018_JSLHR-S-18-0118.
    1. Wolters A, Ziemann U, Benecke R. The cortical silent period. In: Epstein CM, Wassermann EM, Ziemann U, editors. Oxford handbook of transcranial stimulation. Oxford: Oxford University Press; 2008. pp. 1–23.
    1. World Medical Association World Medical association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi: 10.1001/jama.2013.281053.
    1. Zhou WN, Fu HY, Du YF, Sun JH, Zhang JL, Wang C, Svensson P, Wang KL. Short-term effects of repetitive transcranial magnetic stimulation on sleep bruxism—a pilot study. Int J Oral Sci. 2016;8(1):61–65. doi: 10.1038/ijos.2015.35.

Source: PubMed

3
Abonnere