Metabolic profiles of brain metastases

Torill E Sjøbakk, Riyas Vettukattil, Michel Gulati, Sasha Gulati, Steinar Lundgren, Ingrid S Gribbestad, Sverre H Torp, Tone F Bathen, Torill E Sjøbakk, Riyas Vettukattil, Michel Gulati, Sasha Gulati, Steinar Lundgren, Ingrid S Gribbestad, Sverre H Torp, Tone F Bathen

Abstract

Metastasis to the brain is a feared complication of systemic cancer, associated with significant morbidity and poor prognosis. A better understanding of the tumor metabolism might help us meet the challenges in controlling brain metastases. The study aims to characterize the metabolic profile of brain metastases of different origin using high resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) to correlate the metabolic profiles to clinical and pathological information. Biopsy samples of human brain metastases (n = 49) were investigated. A significant correlation between lipid signals and necrosis in brain metastases was observed (p < 0.01), irrespective of their primary origin. The principal component analysis (PCA) showed that brain metastases from malignant melanomas cluster together, while lung carcinomas were metabolically heterogeneous and overlap with other subtypes. Metastatic melanomas have higher amounts of glycerophosphocholine than other brain metastases. A significant correlation between microscopically visible lipid droplets estimated by Nile Red staining and MR visible lipid signals was observed in metastatic lung carcinomas (p = 0.01), indicating that the proton MR visible lipid signals arise from cytoplasmic lipid droplets. MRS-based metabolomic profiling is a useful tool for exploring the metabolic profiles of metastatic brain tumors.

Figures

Figure 1
Figure 1
Representative proton HR-MAS spectra from a patient with brain metastasis from lung carcinoma obtained as (a) pre-saturated, single-pulse spectrum and (b) spin-echo spectrum, showing assignment of various metabolites. The enlarged ppm region 3.6–3.0 ppm shows more details of glycine (Gly), myo-inositol (myo-In), taurine (Tau), scyllo-inositol (scy-In), glycerophosphocholine (GPC), phosphocholine (PCho), choline (Cho) and creatine (Cr).
Figure 2
Figure 2
(a) Principal component analysis (PCA) score plot of PC-1 (explained variance 71%) and PC-3 (explained variance 4%) based on single-pulse spectra (n = 39) showing the distribution of the metastases from four different primary cancer diagnoses; lung (blue), breast (red), colorectal (green) and melanoma carcinomas (yellow). The light blue colored part of the circles reflects the content of necrotic tissue determined by HES staining post HR-MAS; (b) Loading plots for PC-1 and PC-3; Samples with high score values for PC-1 have higher lipid levels. High score values for PC-3 are mainly due to high levels of phosphocholine (PCho).
Figure 3
Figure 3
Nile Red fluorescent-stained images showing lipid droplets in three brain metastases originating from lung carcinoma (A, B, C) and their corresponding mean normalized single-pulse spectra (1.6–0.8 ppm), which demonstrate signal differences due to methylene (1.3 ppm) and methyl groups (0.9 ppm) in the mobile fatty acyl chains.
Figure 4
Figure 4
Distribution of lipid droplets for droplet area between 0 and 1.005 μm2 in bins of 0.015 μm2. The x-axis represents droplet area distribution and the y-axis—droplet density (number LD/mm2). The red, purple and blue bars represent the mean number of LD in high (>70%) medium (40%–70%) and low (<40%) necrosis, respectively.
Figure 5
Figure 5
(a) PCA score plot showing PC-1 (42%) and PC-2 (15%) of cpmgpr spectra (ppm region 4.68–2.98) from brain metastases with less than 50% necrotic tissue (n = 26); (b) The loading plot of PC-2 indicates the metabolites GPC, Cr, Tau, Gly, Cho and Lac as important signals that divide the subtypes. The positive dominating signal in the loading plot for PC-1 (not shown) was PCho, explaining the dispersion in PC-1 direction in the score plot.

References

    1. Barnholtz-Sloan J.S., Sloan A.E., Davis F.G., Vigneau F.D., Lai P., Sawaya R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004;22:2865–2872.
    1. Gavrilovic I.T., Posner J.B. Brain metastases: Epidemiology and pathophysiology. J. Neurooncol. 2005;75:5–14.
    1. Gaspar L.E., Mehta M.P., Patchell R.A., Burri S.H., Robinson P.D., Morris R.E., Ammirati M., Andrews D.W., Asher A.L., Cobbs C.S., et al. The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: A systematic review and evidence-based clinical practice guideline. J. Neurooncol. 2010;96:17–32.
    1. Kalkanis S.N., Kondziolka D., Gaspar L.E., Burri S.H., Asher A.L., Cobbs C.S., Ammirati M., Robinson P.D., Andrews D.W., Loeffler J.S., et al. The role of surgical resection in the management of newly diagnosed brain metastases: A systematic review and evidence-based clinical practice guideline. J. Neurooncol. 2010;96:33–43.
    1. Sperduto C.M., Watanabe Y., Mullan J., Hood T., Dyste G., Watts C., Bender G.P., Sperduto P. A validation study of a new prognostic index for patients with brain metastases: the Graded Prognostic Assessment. J. Neurosurg. 2008;109:87–89.
    1. Sperduto P.W., Berkey B., Gaspar L.E., Mehta M., Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: An analysis of 1960 patients in the RTOG database. Int. J. Radiat. Oncol. Biol. Phys. 2008;70:510–514.
    1. Nieder C., Marienhagen K., Geinitz H., Molls M. Validation of the graded prognostic assessment index for patients with brain metastases. Acta Oncol. 2009;48:457–459.
    1. Jakola A.S., Gulati S., Nerland U.S., Solheim O. Surgical resection of brain metastases: the prognostic value of the graded prognostic assessment score. J. Neurooncol. 2011;105:573–581.
    1. Jakola A.S., Gulati S., Nerland U.S., Solheim O. Patient selection and clinical outcomes in patients operated for brain metastases--is specialty of the referring physicians a prognostic factor? Br. J. Neurosurg. 2012;26:679–683.
    1. Tessem M.B., Selnaes K.M., Sjursen W., Trano G., Giskeodegard G.F., Bathen T.F., Gribbestad I.S., Hofsli E. Discrimination of patients with microsatellite instability colon cancer using 1H HR MAS MR spectroscopy and chemometric analysis. J. Proteome Res. 2010;9:3664–3670.
    1. Borgan E., Sitter B., Lingjaerde O.C., Johnsen H., Lundgren S., Bathen T.F., Sorlie T., Borresen-Dale A.L., Gribbestad I.S. Merging transcriptomics and metabolomics--advances in breast cancer profiling. BMC Cancer. 2010;10 doi: 10.1186/1471-2407-10-628.
    1. Sitter B., Bathen T.F., Tessem M.B., Gribbestad I.S. High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog. Nucl. Mag. Res. Sp. 2009;54:239–254.
    1. Martinez-Bisbal M.C., Celda B. Proton magnetic resonance spectroscopy imaging in the study of human brain cancer. Q. J. Nucl. Med. Mol. Imaging. 2009;53:618–630.
    1. Bathen T.F., Sitter B., Sjobakk T.E., Tessem M.B., Gribbestad I.S. Magnetic resonance metabolomics of intact tissue: A biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 2010;70:6692–6696.
    1. Cao M.D., Sitter B., Bathen T.F., Bofin A., Lonning P.E., Lundgren S., Gribbestad I.S. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 2012;25:369–378.
    1. Sjobakk T.E., Johansen R., Bathen T.F., Sonnewald U., Juul R., Torp S.H., Lundgren S., Gribbestad I.S. Characterization of brain metastases using high-resolution magic angle spinning MRS. NMR Biomed. 2008;21:175–185.
    1. Bertilsson H., Tessem M.B., Flatberg A., Viset T., Gribbestad I., Angelsen A., Halgunset J. Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples. Clin. Cancer Res. 2012;18:3261–3269.
    1. Callies R., Sri-Pathmanathan R.M., Ferguson D.Y., Brindle K.M. The appearance of neutral lipid signals in the 1H NMR spectra of a myeloma cell line correlates with the induced formation of cytoplasmic lipid droplets. Magn. Reson. Med. 1993;29:546–550.
    1. Hakumaki J.M., Kauppinen R.A. 1H NMR visible lipids in the life and death of cells. Trends Biochem. Sci. 2000;25:357–362.
    1. Hakumaki J.M., Liimatainen T. Molecular imaging of apoptosis in cancer. Eur. J. Radiol. 2005;56:143–153.
    1. Delikatny E.J., Chawla S., Leung D.J., Poptani H. MR-visible lipids and the tumor microenvironment. NMR Biomed. 2011;24:592–611.
    1. Howe F.A., Opstad K.S. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 2003;16:123–131.
    1. Sjobakk T.E., Johansen R., Bathen T.F., Sonnewald U., Kvistad K.A., Lundgren S., Gribbestad I.S. Metabolic profiling of human brain metastases using in vivo proton MR spectroscopy at 3T. BMC Cancer. 2007;7 doi: 10.1186/1471-2407-7-141.
    1. Opstad K.S., Bell B.A., Griffiths J.R., Howe F.A. Toward accurate quantification of metabolites, lipids, and macromolecules in HRMAS spectra of human brain tumor biopsies using LCModel. Magn. Reson. Med. 2008;60:1237–1242.
    1. Opstad K.S., Bell B.A., Griffiths J.R., Howe F.A. An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis. NMR Biomed. 2008;21:677–685.
    1. Opstad K.S., Griffiths J.R., Bell B.A., Howe F.A. Apparent T(2) relaxation times of lipid and macromolecules: a study of high-grade tumor spectra. J. Magn. Reson. Imaging. 2008;27:178–184.
    1. Kuesel A.C., Sutherland G.R., Halliday W., Smith I.C. 1H MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue. NMR Biomed. 1994;7:149–155.
    1. Righi V., Mucci A., Schenetti L., Bacci A., Agati R., Leonardi M., Schiavina R., Martorana G., Liguori G., Calabrese C., et al. Identification of mobile lipids in human cancer tissues by ex vivo diffusion edited HR-MAS MRS. Oncol. Rep. 2009;22:1493–1496.
    1. Quintero M., Cabanas M.E., Arus C. A possible cellular explanation for the NMR-visible mobile lipid (ML) changes in cultured C6 glioma cells with growth. Biochim. Biophys. Acta. 2007;1771:31–44.
    1. Zoula S., Herigault G., Ziegler A., Farion R., Decorps M., Remy C. Correlation between the occurrence of 1H-MRS lipid signal, necrosis and lipid droplets during C6 rat glioma development. NMR Biomed. 2003;16:199–212.
    1. Duarte I.F., Rocha C.M., Barros A.S., Gil A.M., Goodfellow B.J., Carreira I.M., Bernardo J., Gomes A., Sousa V., Carvalho L. Can nuclear magnetic resonance (NMR) spectroscopy reveal different metabolic signatures for lung tumours? Virchows Arch. 2010;457:715–725.
    1. Greenspan P., Mayer E.P., Fowler S.D. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985;100:965–973.
    1. Howe F.A., Barton S.J., Cudlip S.A., Stubbs M., Saunders D.E., Murphy M., Wilkins P., Opstad K.S., Doyle V.L., McLean M.A., et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 2003;49:223–232.
    1. Rocha C.M., Barros A.S., Gil A.M., Goodfellow B.J., Humpfer E., Spraul M., Carreira I.M., Melo J.B., Bernardo J., Gomes A., et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J. Proteome Res. 2010;9:319–332.
    1. Gulati S., Berntsen E.M., Solheim O., Kvistad K.A., Haberg A., Selbekk T., Torp S.H., Unsgaard G. Surgical resection of high-grade gliomas in eloquent regions guided by blood oxygenation level dependent functional magnetic resonance imaging, diffusion tensor tractography, and intraoperative navigated 3D ultrasound. Minim. Invasive. Neurosurg. 2009;52:17–24.
    1. Martinez-Bisbal M.C., Marti-Bonmati L., Piquer J., Revert A., Ferrer P., Llacer J.L., Piotto M., Assemat O., Celda B. 1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo 1H MRS study of human high grade gliomas. NMR Biomed. 2004;17:191–205.
    1. Sitter B., Sonnewald U., Spraul M., Fjosne H.E., Gribbestad I.S. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002;15:327–337.
    1. Wright A.J., Fellows G.A., Griffiths J.R., Wilson M., Bell B.A., Howe F.A. Ex-vivo HRMAS of adult brain tumours: Metabolite quantification and assignment of tumour biomarkers. Mol. Cancer. 2010;9 doi: 10.1186/1476-4598-9-66.
    1. Savorani F., Tomasi G., Engelsen S.B. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 2010;202:190–202.
    1. Wold S., Sjöström M., Eriksson L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. 2008;58:109–130.
    1. Snee R.D. Validation of Regression Models: Methods and Examples. Technometrics. 1977;19:415–428.
    1. Westerhuis J.A., Hoefsloot H.C.J., Smit S., Vis D.J., Smilde A.K., van Velzen E.J.J., van Duinhoven J.P.M., van Dorsten F.A. Assessment of PLSDA cross validation. Metabolomics. 2008;4:81–89.

Source: PubMed

3
Abonnere