Correction of an enzyme trafficking defect in hereditary kidney stone disease in vitro

Michael J Lumb, Graeme M Birdsey, Christopher J Danpure, Michael J Lumb, Graeme M Birdsey, Christopher J Danpure

Abstract

In normal human hepatocytes, the intermediary-metabolic enzyme alanine:glyoxylate aminotransferase (AGT) is located within the peroxisomes. However, in approx. one-third of patients suffering from the hereditary kidney stone disease primary hyperoxaluria type 1, AGT is mistargeted to the mitochondria. AGT mistargeting results from the synergistic interaction between a common P11L (Pro11-->Leu) polymorphism and a disease-specific G170R mutation. The polymorphism generates a functionally weak mitochondrial targeting sequence, the efficiency of which is increased by the mutation. The two substitutions together, but not in isolation, inhibit AGT dimerization, highlighting the different structural requirements of the peroxisomal and mitochondrial protein-import machineries. In the present study, we show that treatments known to increase the stability of proteins non-specifically (i.e. lowering the temperature from 37 to 30 degrees C or by the addition of glycerol) completely normalize the intracellular targeting of mutant AGT expressed in transfected COS cells. On the other hand, treatments known to decrease protein stability (e.g. increasing the temperature from 37 to 42 degrees C) exacerbate the targeting defect. Neither of the treatments affects the relative efficiencies of the peroxisomal and mitochondrial protein-import pathways intrinsically. Results are discussed in the light of the known structural requirements of the two protein trafficking pathways and the formulation of possible treatment strategies for primary hyperoxaluria type 1.

References

    1. J Cell Biol. 1989 Apr;108(4):1345-52
    1. J Histochem Cytochem. 1988 Oct;36(10):1285-94
    1. Biochem J. 1990 Jun 1;268(2):517-20
    1. Cell. 1990 Nov 16;63(4):827-34
    1. J Cell Biol. 1990 Dec;111(6 Pt 1):2341-51
    1. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10900-4
    1. FEBS Lett. 1992 Jun 29;305(2):133-6
    1. Nature. 1992 Aug 27;358(6389):761-4
    1. J Cell Biol. 1994 May;125(4):755-67
    1. Hum Genet. 1994 Jul;94(1):55-64
    1. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10541-5
    1. J Cell Biol. 1994 Dec;127(5):1245-57
    1. J Cell Biol. 1995 Oct;131(1):95-109
    1. J Biol Chem. 1996 Jan 12;271(2):635-8
    1. Biochem Biophys Res Commun. 1996 Mar 27;220(3):812-5
    1. Trends Biochem Sci. 1996 Feb;21(2):54-8
    1. Eur J Biochem. 1996 Oct 15;241(2):374-85
    1. J Cell Biol. 1996 Nov;135(4):939-51
    1. Ann N Y Acad Sci. 1996 Dec 27;804:652-3
    1. Plant Cell. 1997 Feb;9(2):185-97
    1. Bioessays. 1997 Apr;19(4):317-26
    1. Cell Stress Chaperones. 1996 Jun;1(2):117-25
    1. J Clin Invest. 1998 May 15;101(10):2257-67
    1. Nat Med. 1999 Jan;5(1):112-5
    1. Plant J. 1998 Dec;16(6):709-20
    1. J Biol Chem. 1999 Jul 16;274(29):20587-96
    1. Science. 1999 Dec 3;286(5446):1882-8
    1. Science. 1999 Dec 3;286(5446):1888-93
    1. Semin Cell Dev Biol. 1999 Oct;10(5):507-13
    1. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1796-801
    1. Biochem J. 2000 Dec 1;352 Pt 2:409-18
    1. J Biol Chem. 2000 Nov 17;275(46):36415-22
    1. Trends Pharmacol Sci. 2000 Dec;21(12):466-9
    1. Acta Crystallogr D Biol Crystallogr. 2001 Dec;57(Pt 12):1936-7
    1. Cell. 1985 Nov;43(1):339-50
    1. EMBO J. 1986 Jun;5(6):1335-42
    1. J Biol Chem. 1987 Nov 15;262(32):15605-9
    1. Cell. 1988 Feb 26;52(4):481-3
    1. J Cell Biol. 1989 May;108(5):1657-64

Source: PubMed

3
Abonnere