Biological factors that place women at risk for HIV: evidence from a large-scale clinical trial in Durban

Nathlee Samantha Abbai, Handan Wand, Gita Ramjee, Nathlee Samantha Abbai, Handan Wand, Gita Ramjee

Abstract

Background: It is well documented that the mucosal linings of the female genital tract (FGT) usually provides a robust barrier that protects against sexually acquired infections. However, to the best of our knowledge there are limited South African studies that have investigated the association between damage to the mucosal linings and the acquisition of HIV infections. We hypothesize that in this cohort of women, a higher rate of HIV seroconversions will be observed for women who present with evidence of mucosal damage.

Methods: We undertook a secondary analysis of the Methods for Improving Reproductive Health in Africa (MIRA) trial that assessed the effectiveness of the latex diaphragm and lubricant gel on HIV prevention among women. Participants underwent a physical examination which included a pelvic examination to detect the presence of mucosal abnormalities. During the physical examinations, the study clinicians examined the genitalia, cervix and vagina for signs of epithelial disruptions and abnormal vaginal discharge. The association between the various genital factors and HIV seroconversion was modeled using Cox proportional hazards regression analysis.

Results: In this cohort of 1485 women that had enrolled to participate in the study, women that had presented with genital epithelial disruptions and abnormal vaginal discharge were shown to be at highest risk for HIV acquisition (Hazard Ratio (HR): 4.30, 95% CI: 2.25, 8.22, p <0001, HR: 2.37, 95% CI: 1.69, 3.33, p <0.001) respectively. In addition, the Kaplan Meier analysis showed that the highest number of seroconversions was observed in women that had disrupted genital epithelia (27 per 100/py, 95% CI: 15.0, 50.7) and abnormal vaginal discharge (12 per 100/py, 95% CI: 9.70, 16.7). Other significant factors included: genital signs and symptoms (HR: 1.67, 95% CI: 1.07, 2.61, p = 0.02) and genital ulcers/sores (HR: 1.79, 95% CI: 1.05, 3.06, p = 0.03).

Conclusion: We have shown that damage to the mucosal epithelial lining increases a women's risk of HIV seroconversion. Future studies that provide an in depth understanding of the mechanisms associated with the FGT and mucosal immunity will be most valuable. An understanding of all of these mechanisms will be key in directing the advancement of products most suitable for combating HIV infection in women.

Trial registration: This study was registered with ClinicalTrials.gov,number NCT00121459 on the 28th February 2007.

Keywords: Abnormal vaginal discharge; Epithelial disruption; HIV infection; Sexually transmitted infections.

Figures

Fig. 1
Fig. 1
Kaplan Meier plots showing the survival rates for the individual genital factors with the crude HIV incidence rates calculated for each variable with the respective p-values. a epithelial disruption and b abnormal vaginal discharge

References

    1. Abaasa A, Crook A, Gafos M, Anywaine Z, Levin J, Wandiembe S, et al. Long-term consistent use of a vaginal microbicide gel among HIV-1 sero-discordant couples in a phase III clinical trial (MDP 301) in rural south-west Uganda. Trials. 2013;14:33. doi: 10.1186/1745-6215-14-33.
    1. Kaushic C, Ferreira VH, Kafka JK, Nazli A. REVIEW ARTICLE: HIV infection in the female genital tract: discrete influence of the local mucosal microenvironment. Am J Reprod Immunol. 2010;63(6):566–575. doi: 10.1111/j.1600-0897.2010.00843.x.
    1. Hickey DK, Patel MV, Fahey JV, Wira CR. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: stratification and integration of immune protection against the transmission of sexually transmitted infections. J Reprod Immunol. 2011;88(2):185–194. doi: 10.1016/j.jri.2011.01.005.
    1. Horbul JE, Schmechel SC, Miller BR, Rice SA, Southern PJ. Herpes simplex virus-induced epithelial damage and susceptibility to human immunodeficiency virus type 1 infection in human cervical organ culture. PLoS One. 2011;6(7) doi: 10.1371/journal.pone.0022638.
    1. Reis Machado J, da Silva MV, Cavellani CL, dos Reis MA, Monteiro ML, Teixeira Vde P, Miranda Corrêa RR. Mucosal Immunity in the Female Genital Tract, HIV/AIDS. BioMed Research International. 2014, 2014:20. doi:10.1155/2014/350195.
    1. White RG. Curable sexually transmitted infection treatment interventions to prevent HIV transmission in sub-Saharan Africa. Open Infct Dis J. 2009;3:148–155. doi: 10.2174/1874279301004010148.
    1. Kalichman SC, Pellowski J, Turner C. Prevalence of sexually transmitted co-infections in people living with HIV/AIDS: systematic review with implications for using HIV treatments for prevention. Sex Transm Infect. 2011;87(3):183–190. doi: 10.1136/sti.2010.047514.
    1. Reddy B, Rastogi S, Das B, Salhan S, Verma S, Mittal A. Cytokine expression pattern in the genital tract of chlamydia trachomatis positive infertile women—implication for T‐cell responses. Clin Exp Immunol. 2004;137(3):552–558. doi: 10.1111/j.1365-2249.2004.02564.x.
    1. Sperling R, Kraus TA, Ding J, Veretennikova A, Lorde-Rollins E, Singh T, et al. Differential profiles of immune mediators and in vitro HIV infectivity between endocervical and vaginal secretions from women with chlamydia trachomatis infection: a pilot study. J Reprod Immunol. 2013;99(1–2):80–87. doi: 10.1016/j.jri.2013.07.003.
    1. Mlisana K, Naicker N, Werner L, Roberts L, van Loggerenberg F, Baxter C, et al. Symptomatic vaginal discharge is a poor predictor of sexually transmitted infections and genital tract inflammation in high-risk women in South Africa. J Infect Dis. 2012;206(1):6–14. doi: 10.1093/infdis/jis298.
    1. Glynn JR, Biraro S, Weiss HA. Herpes simplex virus type 2: a key role in HIV incidence. Aids. 2009;23(12):1595–1598. doi: 10.1097/QAD.0b013e32832e15e8.
    1. Weiss H, Buve A, Robinson N, Van Dyck E, Kahindo M, Anagonou S, et al. The epidemiology of HSV-2 infection and its association with HIV infection in four urban African populations. Aids. 2001;15:S97–S108. doi: 10.1097/00002030-200108004-00011.
    1. Abbai NS, Wand H, Ramjee G. Socio-demographic and behavioural characteristics associated with HSV-2 sero-prevalence in high risk women in KwaZulu-Natal. BMC Research Notes. 2015;8(1):185. doi: 10.1186/s13104-015-1093-0.
    1. Burgener A, McGowan I, Klatt NR. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr Opin Immunol. 2015;36:22–30. doi: 10.1016/j.coi.2015.06.004.
    1. Padian NS, van der Straten A, Ramjee G, Chipato T, de Bruyn G, Blanchard K, et al. Diaphragm and lubricant gel for prevention of HIV acquisition in southern African women: a randomised controlled trial. Lancet. 2007;370(9583):251–261. doi: 10.1016/S0140-6736(07)60950-7.
    1. Moench TR, Chipato T, Padian NS. Preventing disease by protecting the cervix: the unexplored promise of internal vaginal barrier devices. Aids. 2001;15(13):1595–1602. doi: 10.1097/00002030-200109070-00001.
    1. Mesquita PM, Cheshenko N, Wilson SS, Mhatre M, Guzman E, Fakioglu E, et al. Disruption of tight junctions by cellulose sulfate facilitates HIV infection: model of microbicide safety. J Infect Dis. 2009;200(4):599–608. doi: 10.1086/600867.
    1. Galvin SR, Cohen MS. The role of sexually transmitted diseases in HIV transmission. Nat Rev Microbiol. 2004;2(1):33–42. doi: 10.1038/nrmicro794.
    1. Morse SA, Trees DL, Htun Y, Radebe F, Orle KA, Dangor Y, et al. Comparison of clinical diagnosis and standard laboratory and molecular methods for the diagnosis of genital ulcer disease in Lesotho: association with human immunodeficiency virus infection. J Infect Dis. 1997;175(3):583–589. doi: 10.1093/infdis/175.3.583.
    1. Hayes R, Watson-Jones D, Celum C, van de Wijgert J, Wasserheit J. Treatment of sexually transmitted infections for HIV prevention: end of the road or new beginning? London, England: AIDS; 2010, 24(0 4). doi:10.1097/01.aids.0000390704.35642.47.
    1. Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS (London, England) 2008;22(12):1493. doi: 10.1097/QAD.0b013e3283021a37.
    1. Greenblatt RM, Bacchetti P, Barkan S, Augenbraun M, Silver S, Delapenha R, et al. Lower genital tract infections among HIV‐infected and high‐risk uninfected women: findings of the Women's interagency HIV study (WIHS) Sex Transm Dis. 1999;26(3):143–151. doi: 10.1097/00007435-199903000-00004.
    1. Dickerson MC, Johnston J, Delea TE, White A, Andrews E. The causal role for genital ulcer disease as a risk factor for transmission of human immunodeficiency virus: an application of the Bradford hill criteria. Sex Transm Dis. 1996;23(5):429–440. doi: 10.1097/00007435-199609000-00015.
    1. Røttingen J-A, Cameron DW, Garnett GP. A systematic review of the epidemiologic interactions between classic sexually transmitted diseases and HIV: how much really is known? Sex Transm Dis. 2001;28(10):579–597. doi: 10.1097/00007435-200110000-00005.
    1. Yeaman GR, Asin S, Weldon S, Demian DJ, Collins JE, Gonzalez JL, et al. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus‐type I. Immunology. 2004;113(4):524–533. doi: 10.1111/j.1365-2567.2004.01990.x.
    1. Howell AL, Asin SN, Yeaman GR, Wira CR. HIV-1 infection of the female reproductive tract. Curr HIV/AIDS Rep. 2005;2(1):35–38. doi: 10.1007/s11904-996-0007-0.

Source: PubMed

3
Abonnere