A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites

Ben C L van Schaijk, Ivo H J Ploemen, Takeshi Annoura, Martijn W Vos, Lander Foquet, Geert-Jan van Gemert, Severine Chevalley-Maurel, Marga van de Vegte-Bolmer, Mohammed Sajid, Jean-Francois Franetich, Audrey Lorthiois, Geert Leroux-Roels, Philip Meuleman, Cornelius C Hermsen, Dominique Mazier, Stephen L Hoffman, Chris J Janse, Shahid M Khan, Robert W Sauerwein, Ben C L van Schaijk, Ivo H J Ploemen, Takeshi Annoura, Martijn W Vos, Lander Foquet, Geert-Jan van Gemert, Severine Chevalley-Maurel, Marga van de Vegte-Bolmer, Mohammed Sajid, Jean-Francois Franetich, Audrey Lorthiois, Geert Leroux-Roels, Philip Meuleman, Cornelius C Hermsen, Dominique Mazier, Stephen L Hoffman, Chris J Janse, Shahid M Khan, Robert W Sauerwein

Abstract

A highly efficacious pre-erythrocytic stage vaccine would be an important tool for the control and elimination of malaria but is currently unavailable. High-level protection in humans can be achieved by experimental immunization with Plasmodium falciparum sporozoites attenuated by radiation or under anti-malarial drug coverage. Immunization with genetically attenuated parasites (GAP) would be an attractive alternative approach. In this study, we present data on safety and protective efficacy using sporozoites with deletions of two genes, that is the newly identified b9 and slarp, which govern independent and critical processes for successful liver-stage development. In the rodent malaria model, PbΔb9ΔslarpGAP was completely attenuated showing no breakthrough infections while efficiently inducing high-level protection. The human PfΔb9ΔslarpGAP generated without drug resistance markers were infective to human hepatocytes in vitro and to humanized mice engrafted with human hepatocytes in vivo but completely aborted development after infection. These findings support the clinical development of a PfΔb9ΔslarpSPZ vaccine.

Keywords: Plasmodium; genetically attenuated parasite; human; human biology; infectious disease; malaria; medicine; microbiology; mouse; sporozoite; vaccine.

Conflict of interest statement

SLH: CEO of Sanaria Inc, biotechnology company focused on whole sporozoite malaria vaccines.

The other authors declare that no competing interests exist.

Figures

Figure 1.. Generation and genotype analyses of…
Figure 1.. Generation and genotype analyses of P. berghei mutant PbΔb9Δslarp.
(A) Generation of mutant PbΔb9Δslarp. For PbΔb9Δslarp, the DNA-construct pL1740 was generated containing the positive/negative selectable marker cassette hdhfr/yfcy. This construct was subsequently used to generate the mutant PbΔb9Δslarp in the PbΔb9Δsm mutant. See Supplementary file 2A for the sequence of the primers. (B) Diagnostic PCR and Southern analysis of Pulse Field Gel (PFG)-separated chromosomes of mutant PbΔb9Δslarp confirming correct disruption of the slarp and the b9 locus. See Supplementary file 2A for the sequence of the primers used for the selectable marker gene (SM); 5′-integration event (5′); 3′-integration event (3′); and the slarp and the b9 ORF. For Southern analysis, PFG-separated chromosomes were hybridized using a 3′UTR pbdhfr probe that recognizes the construct integrated into P. berghei slarp locus on chromosome 9, the endogenous locus of dhfr/ts on chromosome 7, and a 3′UTR pbdhfr probe that recognizes the construct integrated into P. berghei b9 locus on chromosome 8. In addition, the chromosomes were hybridized with the hdhfr probe recognizing the integrated construct into the slarp locus on chromosome 9. (C) Development of liver-stages in cultured hepatocytes as visualized by staining with antibodies recognizing the parasitophorous vacuole membrane (anti-EXP1; green) and the parasite cytoplasm (anti-HSP70; red). Nuclei are stained with Hoechst-33342. Hpi: hours post-infection. Scale bar represents 10 µm. DOI:http://dx.doi.org/10.7554/eLife.03582.005
Figure 1—figure supplement 1.. Generation and genotype…
Figure 1—figure supplement 1.. Generation and genotype analyses of P. berghei mutant PbΔslarp-a.
(A) Generation of mutant PbΔslarp-a. For PbΔslarp-a, the DNA-construct pL1740 was generated containing the positive/negative selectable marker cassette hdhfr/yfcy. This construct was subsequently used to generate the mutant PbΔslarp-a (1839cl3) in the PbGFP-Luccon reference line. See Supplementary file 2A for the sequence of the primers. (B) Diagnostic PCR and Southern analysis of Pulse Field Gel (PFG)-separated chromosomes of mutant Δslarp-a confirming correct disruption of the slarp-locus. See Supplementary file 2A for the sequence of the primers used for the selectable marker gene (SM); 5′-integration event (5′); 3′-integration event (3′); and the slarp ORF. Mutant PbΔslarp-a has been generated in the reference P. berghei ANKA line PbGFP-Luccon which has a gfp-luciferase gene integrated into the silent 230p locus (PBANKA_030600) on chromosome 3. For Southern analysis, PFG-separated chromosomes were hybridized using a 3′UTR pbdhfr probe that recognizes the construct integrated into P. berghei slarp locus on chromosome 9, the endogenous locus of dhfr/ts on chromosome 7, and the gfp-luciferase gene integrated into chromosome 3. In addition, the chromosomes were hybridized with the hdhfr probe recognizing the integrated construct into the slarp locus on chromosome 9. (C) Real time in vivo imaging of Δslarp luciferase-expressing liver-stage parasites in C57BL/6 mice at 24, 35, and 45 hr post-infection. C57BL/6 mice were IV injected with either 5 × 104Pb-GFPLuccon sporozoites (n = 5), resulting in a full liver infection (upper panel: representative image of WT infected mice), or with 5 × 105 PbΔslarp-a sporozoites (n = 5) (lower panel: representative image of PbΔslarp-luc infected mice). DOI:http://dx.doi.org/10.7554/eLife.03582.006
Figure 2.. Phenotypes of P. falciparum PfΔ…
Figure 2.. Phenotypes of P. falciparum PfΔslarp and PfΔb9Δslarp parasites.
(A) Gametocyte, oocyst, and sporozoite production. Gametocyte numbers (stage II and IV–V) per 1000 erythrocytes at day 8 and day 14 after the start of gametocyte cultures. Exflagellation (Exfl) of male gametocytes in stimulated samples from day 14 cultures (++ score = >10 exflagellation centers per microscope field at 400× magnification). Median number of oocysts at day 7, IQR is the inter quartile range and sporozoite (day 21) production (×1000) in A. stephensi mosquitoes. (B) Gliding motility of P. falciparum WT (cytochalasin D treated and untreated), PfΔslarp-b, PfΔb9Δslarp-F7, and PfΔb9Δslarp-G9 parasites. Gliding motility was quantified by determining the mean percentage ± standard deviation of parasites that exhibited gliding motility by producing characteristic CSP trails (≥1 circles) or parasites that did not produce CSP trails (0 circles). (C) Cell traversal ability of P. falciparum NF54, PfΔslarp-b and PfΔb9Δslarp-F7 sporozoites as determined by FACS counting of Dextran positive Huh7 cells. Shown is the mean percentage ±standard deviation of FITC positive cells. Dextran control (control): hepatocytes cultured in the presence of Dextran but without the addition of sporozoites. DOI:http://dx.doi.org/10.7554/eLife.03582.007
Figure 2—figure supplement 1.. Consecutive gene deletion…
Figure 2—figure supplement 1.. Consecutive gene deletion of slarp and b9 in P. falciparum.
Schematic representation of the genomic loci of (A) slarp (PF11_0480; PF3D7_1147000) on chromosome 11 (Chr. 11) and (B) b9 (PFC_0750w; PF3D7_0317100) on chromosome 3 (Chr. 3) of wild-type (wt; NF54wcb), PfΔslarp and PfΔb9Δslarp gene deletion mutants before (PfΔslarp a and PfΔb9Δslarp) and after the FLPe mediated removal of the hdhfr::gfp resistance marker (PfΔslarp b and PfΔb9Δslarp clones F7/G9), respectively. The constructs for the targeted deletion of slarp (pHHT-FRT-GFP slarp) and b9 (pHHT-FRT-GFP-B9) contain two FRT sequences (red triangles) that are recognized by FLPe. P1, P2 and P3, P4 primer pairs for LR-PCR analysis of slarp and b9 loci respectively; T (TaqI) and R (RcaI): restriction sites used for Southern blot analysis and sizes of restriction fragment are indicated; cam: calmodulin; hrp: histidine rich protein; hsp: heatshock protein; fcu: cytosine deaminase/uracil phosphoribosyltransferase; hdhfr::gfp: human dihydrofolate reductase fusion with green fluorescent protein; pbdt: P. berghei dhfr terminator. DOI:http://dx.doi.org/10.7554/eLife.03582.008
Figure 2—figure supplement 2.. Genotype analysis of…
Figure 2—figure supplement 2.. Genotype analysis of the generated PfΔslarp and PfΔb9Δslarp parasites.
(A) Long range PCR analysis of genomic DNA from WT, PfΔslarp and PfΔb9Δslarp asexual parasites confirms the slarp gene deletion and consecutive gene deletions of both slarp and b9 respectively and subsequent removal of the hdhfr::gfp resistance marker. The PCR products are generated using primers P1,P2 for slarp and P3,P4 for b9 (see A and B respectively; for primer sequences see primer table in Supplementary file 2B) and PCR products are also digested with restriction enzymes x (XmaI) and kx (KpnI/XcmI) respectively for confirmation (i.e. slarp LR-PCR product sizes: WT, 12 kb, is undigested; Δslarp-a, 5.4 kb is digested into 1.3 kb and 4.0 kb fragments, Δslarp-b, 2.4 kb is digested into 1.3 kb and 1.1 kb fragments. b9 LR-PCR product sizes: WT, 5.5 kb, is digested into 756 bp, 793 bp, and 4.0 kb fragments; Δb9-b, 2.6 kb is digested into 756 bp, 793 bp, and 1.1 kb fragments). (B) Southern analysis of restricted genomic DNA from WT, PfΔslarp-a, PfΔslarp-b, PfΔb9Δslarp-F7, and PfΔb9Δslarp-G9 asexual parasites. DNA was digested with restriction enzyme (E: TaqI) and probed with the 5′ slarp targeting region (P: 5′ slarp-T; see A) on the left side of the slarp Southern or probed with the 3′slarp targeting region (P: 3′ slarp-T; see A) on the right side of the slarp panel. For analysis of the b9, integration DNA was digested with restriction enzymes (E: RcaI) and probed with the 5′ b9 targeting region (P: 5′ b9-T; see A) on the right panel. The expected fragment sizes are indicated in panel (A). (C) RT-PCR analysis showing the absence of b9 and slarp transcripts in P. falciparum PfΔslarp-a, PfΔslarp-b, PfΔb9Δslarp-F7, and PfΔb9Δslarp-G9 mutant sporozoites. PCR amplification using purified sporozoite RNA was performed either in the presence or absence of reverse transcriptase (RT+ or RT−, respectively) and generated the expected 506 bp and 580 bp fragments for slarp and b9 respectively, the positive control was performed by PCR of 18S rRNA using primers 18Sf/18Sr (for primer sequences see Supplementary file 2B) and generated the expected 130 bp fragment. DOI:http://dx.doi.org/10.7554/eLife.03582.009
Figure 3.. Development of P. falciparum PfΔ…
Figure 3.. Development of P. falciparum PfΔslarp and PfΔb9Δslarp parasites in human primary hepatocytes.
(A) In vitro invasion of P. falciparum wt, PfΔslarp-a, PfΔslarp-b, PfΔb9Δslarp-F7, and PfΔb9Δslarp-G9 sporozoites in primary human hepatocytes. Invasion is represented as the mean ratio ± standard deviation of extra- and intra-cellular sporozoites by double staining at 3 and 24 hr post-infection, determined after three wash steps to remove sporozoites in suspension. (B) Immunofluorescence assay of PfΔslarp-b parasites in human primary hepatocytes at 3 and 24 hr post-infection. Parasites are visualized by staining with anti-PfCSP antibodies (green; Alexa-488) and parasite, and hepatocyte nuclei are stained with DAPI (blue). Images were photographed on an Olympus FV1000 confocal microscope. Scale bar represents 5 µm. (C) Development of P. falciparum wt, PfΔslarp-a, PfΔslarp-b (top panel), PfΔb9Δslarp-F7, and PfΔb9Δslarp-G9 (bottom panel) liver-stages in primary human hepatocytes following inoculation with 40,000 sporozoites. From day 2 to 7, the mean number ± standard deviation of parasites per 96-well was determined by counting parasites stained with anti-P. falciparum HSP70 antibodies. The bottom panel represents experiments performed in primary human hepatocytes from 2 different donors. No parasites present (NP). (D) Development of liver-stages of PfΔb9Δslarp GAP in chimeric mice engrafted with human hepatocytes. Mice were infected with 106 wt or PfΔb9Δslarp-G9 sporozoites by intravenous inoculation. At 24 hr or at 5 days after sporozoite infection, livers were collected from the mice and the presence of parasites determined by qPCR of the parasite-specific 18S DNA. uPA HuHEP; chimeric homozygous uPA+/+-SCID mice engrafted with human hepatocytes. As controls, uPA mice; heterozygous uPA+/−-SCID mice not engrafted with human hepatocytes were used. DOI:http://dx.doi.org/10.7554/eLife.03582.010

References

    1. Aly AS, Mikolajczak SA, Rivera HS, Camargo N, Jacobs-Lorena V, Labaied M, Coppens I, Kappe SH. Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. Molecular Microbiology. 2008;69:152–163. doi: 10.1111/j.1365-2958.2008.06271.x.
    1. Aly AS, Lindner SE, MacKellar DC, Peng X, Kappe SH. SAP1 is a critical post-transcriptional regulator of infectivity in malaria parasite sporozoite stages. Molecular Microbiology. 2011;79:929–939. doi: 10.1111/j.1365-2958.2010.07497.x.
    1. Annoura T, Ploemen IH, van Schaijk BC, Sajid M, Vos MW, van Gemert GJ, Chevalley-Maurel S, Franke-Fayard BM, Hermsen CC, Gego A, Franetich JF, Mazier D, Hoffman SL, Janse CJ, Sauerwein RW, Khan SM. Assessing the adequacy of attenuation of genetically modified malaria parasite vaccine candidates. Vaccine. 2012;30:2662–2670. doi: 10.1016/j.vaccine.2012.02.010.
    1. Annoura T, van Schaijk BC, Ploemen IH, Sajid M, Lin JW, Vos MW, Dinmohamed AG, Inaoka DK, Rijpma SR, van Gemert GJ, Chevalley-Maurel S, Kielbasa SM, Scheltinga F, Franke-Fayard B, Klop O, Hermsen CC, Kita K, Gego A, Franetich JF, Mazier D, Hoffman SL, Janse CJ, Sauerwein RW, Khan SM. Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development. FASEB Journal. 2014;28:2158–2170. doi: 10.1096/fj.13-241570.
    1. Butler NS, Schmidt NW, Vaughan AM, Aly AS, Kappe SH, Harty JT. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host & Microbe. 2011;9:451–462. doi: 10.1016/j.chom.2011.05.008.
    1. Butler NS, Vaughan AM, Harty JT, Kappe SH. Whole parasite vaccination approaches for prevention of malaria infection. Trends in Immunology. 2012;33:247–254. doi: 10.1016/j.it.2012.02.001.
    1. Clyde DF, Most H, McCarthy VC, Vanderberg JP. Immunization of man against sporozite-induced falciparum malaria. The American Journal of the Medical Sciences. 1973;266:169–177. doi: 10.1097/00000441-197309000-00002.
    1. Committee for Medical Products for Human Use Guideline on environmental risk assessments for medicinal products consisting of, or containing, genetically modified organisms (gmos) European Medicines Agency. 2006 Available at .
    1. Douradinha B, van Dijk MR, Ataide R, van Gemert GJ, Thompson J, Franetich JF, Mazier D, Luty AJ, Sauerwein R, Janse CJ, Waters AP, Mota MM. Genetically attenuated P36p-deficient Plasmodium berghei sporozoites confer long-lasting and partial cross-species protection. International Journal for Parasitology. 2007;37:1511–1519. doi: 10.1016/j.ijpara.2007.05.005.
    1. Epstein JE, Tewari K, Lyke KE, Sim BK, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL. Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science. 2011;334:475–480. doi: 10.1126/science.1211548.
    1. Foquet L, Hermsen CC, van Gemert GJ, Libbrecht L, Sauerwein R, Meuleman P, Leroux-Roels G. Molecular detection and quantification of Plasmodium falciparum-infected human hepatocytes in chimeric immune-deficient mice. Malaria Journal. 2013;12:430. doi: 10.1186/1475-2875-12-430.
    1. Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, van der Keur M, van der Linden R, Sinden RE, Waters AP, Janse CJ. A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Molecular and Biochemical Parasitology. 2004;137:23–33. doi: 10.1016/j.molbiopara.2004.04.007.
    1. Frey J. Biological safety concepts of genetically modified live bacterial vaccines. Vaccine. 2007;25:5598–5605. doi: 10.1016/j.vaccine.2006.11.058.
    1. Gouagna LC, van der Kolk M, Roeffen W, Verhave JP, Eling W, Sauerwein R, Boudin C. Role of heat-labile serum factor or host complement in the inhibition of Plasmodium falciparum sporogonic stages in Anopheles stephensi by gametocyte carriers' serological factors. Parasitology. 2007;134:1315–1327.
    1. Heiss K, Nie H, Kumar S, Daly TM, Bergman LW, Matuschewski K. Functional characterization of a redundant Plasmodium TRAP family invasin, TRAP-like protein, by aldolase binding and a genetic complementation test. Eukaryotic Cell. 2008;7:1062–1070. doi: 10.1128/EC.00089-08.
    1. Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T, Chakravarty S, Gunasekera A, Chattopadhyay R, Li M, Stafford R, Ahumada A, Epstein JE, Sedegah M, Reyes S, Richie TL, Lyke KE, Edelman R, Laurens MB, Plowe CV, Sim BK. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Human Vaccines. 2010;6:97–106. doi: 10.4161/hv.6.1.10396.
    1. Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, Gordon DM, Stoute JA, Church LW, Sedegah M, Heppner DG, Ballou WR, Richie TL. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. The Journal of Infectious Diseases. 2002;185:1155–1164. doi: 10.1086/339409.
    1. Ifediba T, Vanderberg JP. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature. 1981;294:364–366. doi: 10.1038/294364a0.
    1. Janse CJ, Franke-Fayard B, Mair GR, Ramesar J, Thiel C, Engelmann S, Matuschewski K, van Gemert GJ, Sauerwein RW, Waters AP. High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Molecular and Biochemical Parasitology. 2006a;145:60–70. doi: 10.1016/j.molbiopara.2005.09.007.
    1. Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nature Protocols. 2006b;1:346–356. doi: 10.1038/nprot.2006.53.
    1. Khan SM, Janse CJ, Kappe SH, Mikolajczak SA. Genetic engineering of attenuated malaria parasites for vaccination. Current Opinion in Biotechnology. 2012;23:908–916. doi: 10.1016/j.copbio.2012.04.003.
    1. Kumar KA, Baxter P, Tarun AS, Kappe SH, Nussenzweig V. Conserved protective mechanisms in radiation and genetically attenuated uis3(-) and uis4(-) Plasmodium sporozoites. PLOS ONE. 2009;4:e4480. doi: 10.1371/journal.pone.0004480.
    1. Labaied M, Harupa A, Dumpit RF, Coppens I, Mikolajczak SA, Kappe SH. Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are completely attenuated and confer sterile immunity against infection. Infection and Immunity. 2007;75:3758–3768. doi: 10.1128/IAI.00225-07.
    1. Lin JW, Annoura T, Sajid M, Chevalley-Maurel S, Ramesar J, Klop O, Franke-Fayard BM, Janse CJ, Khan SM. A novel 'gene insertion/marker out' (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLOS ONE. 2011;6:e29289. doi: 10.1371/journal.pone.0029289.
    1. Lin JW, Meireles P, Prudêncio M, Engelmann S, Annoura T, Sajid M, Chevalley-Maurel S, Ramesar J, Nahar C, Avramut CM, Koster AJ, Matuschewski K, Waters AP, Janse CJ, Mair GR, Khan SM. Loss-of-function analyses defines vital and redundant functions of the Plasmodium rhomboid protease family. Molecular Microbiology. 2013;88:318–338. doi: 10.1111/mmi.12187.
    1. Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proceedings of the National Academy of Sciences of USA. 2006;103:8840–8845. doi: 10.1073/pnas.0601876103.
    1. malERA Consultative Group on Vaccines A research agenda for malaria eradication: vaccines. PLoS Medicine. 2011;8:e1000398. doi: 10.1371/journal.pmed.1000398.
    1. Meuleman P, Libbrecht L, De Vos R, de Hemptinne B, Gevaert K, Vandekerckhove J, Roskams T, Leroux-Roels G. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology. 2005;41:847–856. doi: 10.1002/hep.20657.
    1. Mikolajczak SA, Sacci JB, Jr, De La Vega P, Camargo N, VanBuskirk K, Krzych U, Cao J, Jacobs-Lorena M, Cowman AF, Kappe SH. Disruption of the Plasmodium falciparum liver-stage antigen-1 locus causes a differentiation defect in late liver-stage parasites. Cellular Microbiology. 2011;13:1250–1260. doi: 10.1111/j.1462-5822.2011.01617.x.
    1. Mikolajczak SA, Lakshmanan V, Fishbaugher M, Camargo N, Harupa A, Kaushansky A, Douglass AN, Baldwin M, Healer J, O'Neill M, Phuong T, Cowman A, Kappe SHI. A next-generation genetically attenuated Plasmodium falciparum parasite created by triple gene deletion. Molecular therapy. 2014;22:1707–1715. doi: 10.1038/mt.2014.85.
    1. Mueller AK, Camargo N, Kaiser K, Andorfer C, Frevert U, Matuschewski K, Kappe SH. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proceedings of the National Academy of Sciences of USA. 2005;102:3022–3027. doi: 10.1073/pnas.0408442102.
    1. Nganou-Makamdop K, Sauerwein RW. Liver or blood-stage arrest during malaria sporozoite immunization: the later the better? Trends in Parasitology. 2013;29:304–310. doi: 10.1016/j.pt.2013.03.008.
    1. Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature. 1967;216:160–162. doi: 10.1038/216160a0.
    1. Ploemen IH, Prudencio M, Douradinha BG, Ramesar J, Fonager J, van Gemert GJ, Luty AJ, Hermsen CC, Sauerwein RW, Baptista FG, Mota MM, Waters AP, Que I, Lowik CW, Khan SM, Janse CJ, Franke-Fayard BM. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLOS ONE. 2009;4:e7881. doi: 10.1371/journal.pone.0007881.
    1. Ploemen IH, Croes HJ, van Gemert GJ, Wijers-Rouw M, Hermsen CC, Sauerwein RW. Plasmodium berghei Deltap52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells. PLOS ONE. 2012;7:e50772. doi: 10.1371/journal.pone.0050772.
    1. Ploemen IH, Chakravarty S, van Gemert GJ, Annoura T, Khan SM, Janse CJ, Hermsen CC, Hoffman SL, Sauerwein RW. Plasmodium liver load following parenteral sporozoite administration in rodents. Vaccine. 2012;31:3410–3416. doi: 10.1016/j.vaccine.2012.09.080.
    1. Plowe CV, Alonso P, Hoffman SL. The potential role of vaccines in the elimination of falciparum malaria and the eventual eradication of malaria. The Journal of Infectious Diseases. 2009;200:1646–1649. doi: 10.1086/646613.
    1. Ponnudurai T, Leeuwenberg AD, Meuwissen JH. Chloroquine sensitivity of isolates of Plasmodium falciparum adapted to in vitro culture. Tropical and Geographical Medicine. 1981;33:50–54.
    1. Ponnudurai T, Lensen AH, Leeuwenberg AD, Meuwissen JH. Cultivation of fertile Plasmodium falciparum gametocytes in semi-automated systems. 1. Static cultures. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1982;76:812–818. doi: 10.1016/0035-9203(82)90116-X.
    1. Ponnudurai T, Lensen AH, Van Gemert GJ, Bensink MP, Bolmer M, Meuwissen JH. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology. 1989;98:165–173. doi: 10.1017/S0031182000062065.
    1. Renia L, Mattei D, Goma J, Pied S, Dubois P, Miltgen F, Nüssler A, Matile H, Menégaux F, Gentilini M, Dominique M. A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells. European Journal of Immunology. 1990;20:1445–1449. doi: 10.1002/eji.1830200706.
    1. Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte-Bolmer M, van Schaijk B, Teelen K, Arens T, Spaarman L, de Mast Q, Roeffen W, Snounou G, Renia L, van der Ven A, Hermsen CC, Sauerwein R. Protection against a malaria challenge by sporozoite inoculation. The New England Journal of Medicine. 2009;361:468–477. doi: 10.1056/NEJMoa0805832.
    1. Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN, Wiersma J, Arens T, Beckers P, van Gemert G, van de Vegte-Bolmer M, van der Ven AJ, Luty AJ, Hermsen CC, Sauerwein RW. Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet. 2011;377:1770–1776. doi: 10.1016/S0140-6736(11)60360-7.
    1. Roestenberg M, Bijker EM, Sim BK, Billingsley PF, James ER, Bastiaens GJ, Teirlinck AC, Scholzen A, Teelen K, Arens T, van der Ven AJ, Gunasekera A, Chakravarty S, Velmurugan S, Hermsen CC, Sauerwein RW, Hoffman SL. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. The American Journal of Tropical Medicine and Hygiene. 2013;88:5–13. doi: 10.4269/ajtmh.2012.12-0613.
    1. Sambrook J, Russel WD. Molecular Cloning: A Laboratory Manual. 3rd edition Cold Spring Harbor Laboratory press, Cold Spring Harbor; 2001.
    1. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, James ER, Billingsley PF, Gunasekera A, Richman A, Chakravarty S, Manoj A, Velmurugan S, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, Plummer SH, Hendel CS, Novik L, Costner PJ, Mendoza FH, Saunders JG, Nason MC, Richardson JH, Murphy J, Davidson SA, Richie TL, Sedegah M, Sutamihardja A, Fahle GA, Lyke KE, Laurens MB, Roederer M, Tewari K, Epstein JE, Sim BK, Ledgerwood JE, Graham BS, Hoffman SL, VRC 312 Study Team Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341:1359–1365. doi: 10.1126/science.1241800.
    1. Silvie O, Goetz K, Matuschewski K. A sporozoite asparagine-rich protein controls initiation of Plasmodium liver stage development. PLOS Pathogens. 2008;4:e1000086. doi: 10.1371/journal.ppat.1000086.
    1. Spring M, Murphy J, Nielsen R, Dowler M, Bennett JW, Zarling S, Williams J, de la Vega P, Ware L, Komisar J, Polhemus M, Richie TL, Epstein J, Tamminga C, Chuang I, Richie N, O'Neil M, Heppner DG, Healer J, O'Neill M, Smithers H, Finney OC, Mikolajczak SA, Wang R, Cowman A, Ockenhouse C, Krzych U, Kappe SH. First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine. 2013;31:4975–4983. doi: 10.1016/j.vaccine.2013.08.007.
    1. Stewart MJ, Vanderberg JP. Malaria sporozoites leave behind trails of circumsporozoite protein during gliding motility. The Journal of Protozoology. 1988;35:389–393. doi: 10.1111/j.1550-7408.1988.tb04115.x.
    1. Sturm A, Heussler V. Live and let die: manipulation of host hepatocytes by exoerythrocytic Plasmodium parasites. Medical Microbiology and Immunology. 2007;196:127–133. doi: 10.1007/s00430-007-0044-3.
    1. Thaithong S. In: Application of genetic engineering to research on tropical disease pathogens with special reference to Plasmodia. Panyim S, Wilairat P, Yuthavong Y, editors. Bangkok: 1985. pp. 379–387.
    1. van Dijk MR, Douradinha B, Franke-Fayard B, Heussler V, van Dooren MW, van Schaijk B, van Gemert GJ, Sauerwein RW, Mota MM, Waters AP, Janse CJ. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proceedings of the National Academy of Sciences of USA. 2005;102:12194–12199. doi: 10.1073/pnas.0500925102.
    1. van Dijk MR, van Schaijk BC, Khan SM, van Dooren MW, Ramesar J, Kaczanowski S, van Gemert GJ, Kroeze H, Stunnenberg HG, Eling WM, Sauerwein RW, Waters AP, Janse CJ. Three members of the 6-cys protein family of Plasmodium play a role in gamete fertility. PLOS Pathogens. 2010;6:e1000853. doi: 10.1371/journal.ppat.1000853.
    1. van Schaijk BC, Janse CJ, van Gemert GJ, van Dijk MR, Gego A, Franetich JF, van de Vegte-Bolmer M, Yalaoui S, Silvie O, Hoffman SL, Waters AP, Mazier D, Sauerwein RW, Khan SM. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes. PLOS ONE. 2008;3:e3549. doi: 10.1371/journal.pone.0003549.
    1. van Schaijk BC, Vos MW, Janse CJ, Sauerwein RW, Khan SM. Removal of heterologous sequences from plasmodium falciparum mutants using FLPe-recombinase. PLOS ONE. 2010;5:e15121. doi: 10.1371/journal.pone.0015121.
    1. van Schaijk BC, Kumar TR, Vos MW, Richman A, van Gemert GJ, Li T, Eappen AG, Williamson KC, Morahan BJ, Fishbaugher M, Kennedy M, Camargo N, Khan SM, Janse CJ, Sim KL, Hoffman SL, Kappe SH, Sauerwein RW, Fidock DA, Vaughan AM. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes. Eukaryotic Cell. 2013;13:550–559. doi: 10.1128/EC.00264-13.
    1. VanBuskirk KM, O'Neill MT, De La Vega P, Maier AG, Krzych U, Williams J, Dowler MG, Sacci JB, Jr, Kangwanrangsan N, Tsuboi T, Kneteman NM, Heppner DG, Jr, Murdock BA, Mikolajczak SA, Aly AS, Cowman AF, Kappe SH. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proceedings of the National Academy of Sciences of USA. 2009;106:13004–13009. doi: 10.1073/pnas.0906387106.
    1. Vaughan AM, O'Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cellular Microbiology. 2009;11:506–520. doi: 10.1111/j.1462-5822.2008.01270.x.

Source: PubMed

3
Abonnere