Relations of Metabolic Health and Obesity to Brain Aging in Young to Middle-Aged Adults

Rebecca Angoff, Jayandra J Himali, Pauline Maillard, Hugo J Aparicio, Ramachandran S Vasan, Sudha Seshadri, Alexa S Beiser, Connie W Tsao, Rebecca Angoff, Jayandra J Himali, Pauline Maillard, Hugo J Aparicio, Ramachandran S Vasan, Sudha Seshadri, Alexa S Beiser, Connie W Tsao

Abstract

Background We aimed to evaluate the association between metabolic health and obesity and brain health measured via magnetic resonance imaging and neurocognitive testing in community dwelling adults. Methods and Results Framingham Heart Study Third Generation Cohort members (n=2170, 46±9 years of age, 54% women) without prevalent diabetes, stroke, dementia, or other neurologic conditions were grouped by metabolic unhealthiness (≥2 criteria for metabolic syndrome) and obesity (body mass index ≥30 kg/m2): metabolically healthy (MH) nonobese, MH obese, metabolically unhealthy (MU) nonobese, and MU obese. We evaluated the relationships of these groups with brain structure (magnetic resonance imaging) and function (neurocognitive tests). In multivariable-adjusted analyses, metabolically unhealthy individuals (MU nonobese and MU obese) had lower total cerebral brain volume compared with the MH nonobese referent group (both P<0.05). Additionally, the MU obese group had greater white matter hyperintensity volume (P=0.004), whereas no association was noted between white matter hyperintensity volume and either groups of metabolic health or obesity alone. Obese individuals had less favorable cognitive scores: MH obese had lower scores on global cognition, Logical Memory-Delayed Recall and Similarities tests, and MU obese had lower scores on Similarities and Visual Reproductions-Delayed tests (all P≤0.04). MU and obese groups had higher free water content and lower fractional anisotropy in several brain regions, consistent with loss of white matter integrity. Conclusions In this cross-sectional cohort study of younger to middle-aged adults, poor metabolic health and obesity were associated with structural and functional evidence of brain aging. Improvement in metabolic health and obesity may present opportunities to improve long-term brain health.

Keywords: aging; cognitive aging; magnetic resonance imaging; metabolic syndrome; obesity.

Figures

Figure 1. Flowchart of participants illustrating those…
Figure 1. Flowchart of participants illustrating those included/excluded.
MRI indicates magnetic resonance imaging.
Figure 2. Associations of metabolic group with…
Figure 2. Associations of metabolic group with free water (FW) and fractional anisotropy (FA).
P value strength is indicated by color. A, Regions of higher FW content in metabolically healthy (MH) obese compared with MH nonobese (referent). B, Regions of higher FW content in metabolically unhealthy (MU) nonobese compared with MH nonobese (referent). C, Regions of higher FW content in MU obese compared with MH nonobese (referent). D, Regions of lower FA content in MH obese compared with MH nonobese (referent). E, Regions of lower FA content in MU nonobese compared with MH nonobese (referent). L indicates left; MHNO indicates metabolically healthy nonobese participants; MHO, metabolically healthy obese; MUNO, metabolically unhealthy nonobese; MUO, metabolically unhealthy obese; and R, right.

References

    1. de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol. 2012;2012:367516. doi: 10.1155/2012/367516
    1. McQueen J, Reimer MM, Holland PR, Manso Y, McLaughlin M, Fowler JH, Horsburgh K. Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion. PLoS One. 2014;9:e87227. doi: 10.1371/journal.pone.0087227
    1. Csiszar A, Tarantini S, Fülöp GA, Kiss T, Valcarcel‐Ares MN, Galvan V, Ungvari Z, Yabluchanskiy A. Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. Geroscience. 2017;39:359–372. doi: 10.1007/s11357-017-9991-9
    1. DeCarli C, Kawas C, Morrison JH, Reuter‐Lorenz PA, Sperling RA, Wright CB. Session II: mechanisms of age‐related cognitive change and targets for intervention: neural circuits, networks, and plasticity. J Gerontol A Biol Sci Med Sci. 2012;67:747–753. doi: 10.1093/gerona/gls111
    1. Tsao CW, Himali JJ, Beiser AS, Larson MG, DeCarli C, Vasan RS, Mitchell GF, Seshadri S. Association of arterial stiffness with progression of subclinical brain and cognitive disease. Neurology. 2016;86:619–626. doi: 10.1212/WNL.0000000000002368
    1. Maillard P, Mitchell GF, Himali JJ, Beiser A, Fletcher E, Tsao CW, Pase MP, Satizabal CL, Vasan RS, Seshadri S, et al. Aortic stiffness, increased white matter free water, and altered microstructural integrity: a continuum of injury. Stroke. 2017;48:1567–1573. doi: 10.1161/STROKEAHA.116.016321
    1. Winder NR, Reeve EH, Walker AE. Large artery stiffness and brain health: insights from animal models. Am J Physiol Heart Circ Physiol. 2021;320:H424–H431. doi: 10.1152/ajpheart.00696.2020
    1. Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2:246–255. doi: 10.1016/S2213-8587(13)70088-3
    1. Duschek S, Matthias E, Schandry R. Essential hypotension is accompanied by deficits in attention and working memory. Behav Med. 2005;30:149–158. doi: 10.3200/BMED.30.4.149-160
    1. Stoeckel LE, Arvanitakis Z, Gandy S, Small D, Kahn CR, Pascual‐Leone A, Pawlyk A, Sherwin R, Smith P. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000Res. 2016;5:353. doi: 10.12688/f1000research.8300.2
    1. Cerhan JR, Folsom AR, Mortimer JA, Shahar E, Knopman DS, McGovern PG, Hays MA, Crum LD, Heiss G. Correlates of cognitive function in middle‐aged adults. Atherosclerosis risk in communities (ARIC) study investigators. Gerontology. 1998;44:95–105. doi: 10.1159/000021991
    1. Johnson W, Corley J, Starr JM, Deary IJ. Psychological and physical health at age 70 in the Lothian Birth Cohort 1936: links with early life IQ, SES, and current cognitive function and neighborhood environment. Health Psychol. 2011;30:1–11. doi: 10.1037/a0021834
    1. Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, McGovern P, Folsom AR, Atherosclerosis Risk in Communities Study I . Cardiovascular risk factors and cognitive decline in middle‐aged adults. Neurology. 2001;56:42–48. doi: 10.1212/WNL.56.1.42
    1. Lyall DM, Celis‐Morales CA, Anderson J, Gill JM, Mackay DF, McIntosh AM, Smith DJ, Deary IJ, Sattar N, Pell JP. Associations between single and multiple cardiometabolic diseases and cognitive abilities in 474 129 UK biobank participants. Eur Heart J. 2017;38:577–583. doi: 10.1093/eurheartj/ehw528
    1. An investigation of coronary heart disease in families: the Framingham offspring study. Am J Epidemiol. 2017;185:1093–1102. doi: 10.1093/aje/kwx110
    1. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB, Fox CS, Larson MG, Murabito JM, et al. The third generation cohort of the national heart, lung, and blood institute's Framingham heart study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165:1328–1335. doi: 10.1093/aje/kwm021
    1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults . Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–2497. doi: 10.1001/jama.285.19.2486
    1. DeCarli C, Maisog J, Murphy DG, Teichberg D, Rapoport SI, Horwitz B. Method for quantification of brain, ventricular, and subarachnoid CSF volumes from MR images. J Comput Assist Tomogr. 1992;16:274–284. doi: 10.1097/00004728-199203000-00018
    1. DeCarli C, Massaro J, Harvey D, Hald J, Tullberg M, Au R, Beiser A, D'Agostino R, Wolf PA. Measures of brain morphology and infarction in the Framingham heart study: establishing what is normal. Neurobiol Aging. 2005;26:491–510. doi: 10.1016/j.neurobiolaging.2004.05.004
    1. Tsao CW, Seshadri S, Beiser AS, Westwood AJ, DeCarli C, Au R, Himali JJ, Hamburg NM, Vita JA, Levy D, et al. Relations of arterial stiffness and endothelial function to brain aging in the community. Neurology. 2013;81:984–991. doi: 10.1212/WNL.0b013e3182a43e1c
    1. Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, Sigurdsson S, Lumley T, DeStefano AL, Fazekas F, et al. Genome‐wide association studies of cerebral white matter lesion burden: the charge consortium. Ann Neurol. 2011;69:928–939. doi: 10.1002/ana.22403
    1. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62:717–730. doi: 10.1002/mrm.22055
    1. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015
    1. Echouffo‐Tcheugui JB, Conner SC, Himali JJ, Maillard P, DeCarli CS, Beiser AS, Vasan RS, Seshadri S. Circulating cortisol and cognitive and structural brain measures: the Framingham heart study. Neurology. 2018;91:e1961–e1970. doi: 10.1212/WNL.0000000000006549
    1. Au R, Seshadri S, Wolf PA, Elias M, Elias P, Sullivan L, Beiser A, D'Agostino RB. New norms for a new generation: cognitive performance in the Framingham offspring cohort. Exp Aging Res. 2004;30:333–358. doi: 10.1080/03610730490484380
    1. Pase MP, Beiser A, Enserro D, Xanthakis V, Aparicio H, Satizabal CL, Himali JJ, Kase CS, Vasan RS, DeCarli C, et al. Association of ideal cardiovascular health with vascular brain injury and incident dementia. Stroke. 2016;47:1201–1206. doi: 10.1161/STROKEAHA.115.012608
    1. Melo van Lent D, O’Donnell A, Beiser AS, Vasan RS, DeCarli CS, Scarmeas N, Wagner M, Jacques PF, Seshadri S, Himali JJ, et al. Mind diet adherence and cognitive performance in the Framingham heart study. J Alzheimers Dis. 2021;82:827–839. doi: 10.3233/JAD-201238
    1. O'Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–204. doi: 10.1161/01.HYP.0000168052.00426.65
    1. Brant LCC, Wang NA, Ojeda FM, LaValley M, Barreto SM, Benjamin EJ, Mitchell GF, Vasan RS, Palmisano JN, Münzel T, et al. Relations of metabolically healthy and unhealthy obesity to digital vascular function in three community‐based cohorts: a meta‐analysis. J Am Heart Assoc. 2017;6:e004199. doi: 10.1161/JAHA.116.004199
    1. Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med. 2015;47:e149. doi: 10.1038/emm.2015.3
    1. Gunstad J, Spitznagel MB, Keary TA, Glickman E, Alexander T, Karrer J, Stanek K, Reese L, Juvancic‐Heltzel J. Serum leptin levels are associated with cognitive function in older adults. Brain Res. 2008;1230:233–236. doi: 10.1016/j.brainres.2008.07.045
    1. Spitznagel MB, Benitez A, Updegraff J, Potter V, Alexander T, Glickman E, Gunstad J. Serum ghrelin is inversely associated with cognitive function in a sample of non‐demented elderly. Psychiatry Clin Neurosci. 2010;64:608–611. doi: 10.1111/j.1440-1819.2010.02145.x
    1. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol. 2003;60:989–994. doi: 10.1001/archneur.60.7.989
    1. Tiehuis AM, van der Graaf Y, Mali WP, Vincken K, Muller M, Geerlings MI. Metabolic syndrome, prediabetes, and brain abnormalities on MRI in patients with manifest arterial disease: the smart‐MR study. Diabetes Care. 2014;37:2515–2521. doi: 10.2337/dc14-0154
    1. Kalaria RN, Akinyemi R, Ihara M. Does vascular pathology contribute to Alzheimer changes? J Neurol Sci. 2012;322:141–147. doi: 10.1016/j.jns.2012.07.032
    1. Kaffashian S, Soumaré A, Zhu YC, Mazoyer B, Debette S, Tzourio C. Long‐term clinical impact of vascular brain lesions on magnetic resonance imaging in older adults in the population. Stroke. 2016;47:2865–2869. doi: 10.1161/STROKEAHA.116.014695
    1. Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly‐Hayes M, Romero JR, Kase CS, Wolf PA, Seshadri S. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham offspring study. Stroke. 2010;41:600–606. doi: 10.1161/STROKEAHA.109.570044
    1. Wardlaw JM, Makin SJ, Valdés Hernández MC, Armitage PA, Heye AK, Chappell FM, Muñoz‐Maniega S, Sakka E, Shuler K, Dennis MS, et al. Blood‐brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimer's & Dementia. 2017;13:634–643. doi: 10.1016/j.jalz.2016.09.006
    1. Duering M, Finsterwalder S, Baykara E, Tuladhar AM, Gesierich B, Konieczny MJ, Malik R, Franzmeier N, Ewers M, Jouvent E, et al. Free water determines diffusion alterations and clinical status in cerebral small vessel disease. Alzheimers Dement. 2018;14:764–774. doi: 10.1016/j.jalz.2017.12.007
    1. Maillard P, Fletcher E, Singh B, Martinez O, Johnson DK, Olichney JM, Farias ST, DeCarli C. Cerebral white matter free water: a sensitive biomarker of cognition and function. Neurology. 2019;92:e2221–e2231. doi: 10.1212/WNL.0000000000007449
    1. Ofori E, DeKosky ST, Febo M, Colon‐Perez L, Chakrabarty P, Duara R, Adjouadi M, Golde TE, Vaillancourt DE. Free‐water imaging of the hippocampus is a sensitive marker of Alzheimer's disease. Neuroimage Clin. 2019;24:101985. doi: 10.1016/j.nicl.2019.101985
    1. Lampe L, Zhang R, Beyer F, Huhn S, Kharabian Masouleh S, Preusser S, Bazin PL, Schroeter ML, Villringer A, Witte AV. Visceral obesity relates to deep white matter hyperintensities via inflammation. Ann Neurol. 2019;85:194–203. doi: 10.1002/ana.25396
    1. Portet F, Brickman AM, Stern Y, Scarmeas N, Muraskin J, Provenzano FA, Berr C, Bonafé A, Artero S, Ritchie K, et al. Metabolic syndrome and localization of white matter hyperintensities in the elderly population. Alzheimers Dement. 2012;8:S88–S95.e81. doi: 10.1016/j.jalz.2011.11.007
    1. Benito‐Leon J, Mitchell AJ, Hernandez‐Gallego J, Bermejo‐Pareja F. Obesity and impaired cognitive functioning in the elderly: a population‐based cross‐sectional study (NEDICES). Eur J Neurol. 2013;20:899–906, e876–897. doi: 10.1111/ene.12083
    1. Boeka AG, Lokken KL. Neuropsychological performance of a clinical sample of extremely obese individuals. Arch Clin Neuropsychol. 2008;23:467–474. doi: 10.1016/j.acn.2008.03.003
    1. Cavalieri M, Ropele S, Petrovic K, Pluta‐Fuerst A, Homayoon N, Enzinger C, Grazer A, Katschnig P, Schwingenschuh P, Berghold A, et al. Metabolic syndrome, brain magnetic resonance imaging, and cognition. Diabetes Care. 2010;33:2489–2495. doi: 10.2337/dc10-0851
    1. Elias MF, Beiser A, Wolf PA, Au R, White RF, D'Agostino RB. The preclinical phase of Alzheimer disease: a 22‐year prospective study of the Framingham cohort. Arch Neurol. 2000;57:808–813. doi: 10.1001/archneur.57.6.808
    1. Smith E, Hay P, Campbell L, Trollor JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12:740–755. doi: 10.1111/j.1467-789X.2011.00920.x
    1. Brickman AM, Zimmerman ME, Paul RH, Grieve SM, Tate DF, Cohen RA, Williams LM, Clark CR, Gordon E. Regional white matter and neuropsychological functioning across the adult lifespan. Biol Psychiatry. 2006;60:444–453. doi: 10.1016/j.biopsych.2006.01.011
    1. Yoshita M, Fletcher E, Harvey D, Ortega M, Martinez O, Mungas DM, Reed BR, DeCarli CS. Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology. 2006;67:2192–2198. doi: 10.1212/01.wnl.0000249119.95747.1f
    1. Segura B, Jurado MA, Freixenet N, Bargalló N, Junqué C, Arboix A. White matter fractional anisotropy is related to processing speed in metabolic syndrome patients: a case‐control study. BMC Neurol. 2010;10:64. doi: 10.1186/1471-2377-10-64
    1. Bokura H, Yamaguchi S, Iijima K, Nagai A, Oguro H. Metabolic syndrome is associated with silent ischemic brain lesions. Stroke. 2008;39:1607–1609. doi: 10.1161/STROKEAHA.107.508630
    1. Kwon HM, Kim BJ, Park JH, Ryu WS, Kim CK, Lee SH, Ko SB, Nam H, Lee SH, Lee YS, et al. Significant association of metabolic syndrome with silent brain infarction in elderly people. J Neurol. 2009;256:1825–1831. doi: 10.1007/s00415-009-5201-8
    1. Stanek KM, Grieve SM, Brickman AM, Korgaonkar MS, Paul RH, Cohen RA, Gunstad JJ. Obesity is associated with reduced white matter integrity in otherwise healthy adults. Obesity (Silver Spring). 2011;19:500–504. doi: 10.1038/oby.2010.312
    1. Xu J, Li Y, Lin H, Sinha R, Potenza MN. Body mass index correlates negatively with white matter integrity in the fornix and corpus callosum: a diffusion tensor imaging study. Hum Brain Mapp. 2013;34:1044–1052. doi: 10.1002/hbm.21491
    1. Huang X, Du X, Song H, Zhang Q, Jia J, Xiao T, Wu J. Cognitive impairments associated with corpus callosum infarction: a ten cases study. Int J Clin Exp Med. 2015;8:21991–21998.
    1. Xiong K, Zhu Y, Zhang Y, Yin Z, Zhang J, Qiu M, Zhang W. White matter integrity and cognition in mild traumatic brain injury following motor vehicle accident. Brain Res. 2014;1591:86–92. doi: 10.1016/j.brainres.2014.10.030
    1. Maillard P, Carmichael O, Fletcher E, Reed B, Mungas D, DeCarli C. Coevolution of white matter hyperintensities and cognition in the elderly. Neurology. 2012;79:442–448. doi: 10.1212/WNL.0b013e3182617136
    1. Tate DF, Jefferson AL, Brickman AM, Hoth KF, Gunstad J, Bramley K, Paul RH, Poppas A, Cohen RA. Regional white matter signal abnormalities and cognitive correlates among geriatric patients with treated cardiovascular disease. Brain Imaging Behav. 2008;2:200–206. doi: 10.1007/s11682-008-9032-5
    1. Elias PK, Elias MF, D'Agostino RB, Cupples LA, Wilson PW, Silbershatz H, Wolf PA. NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care. 1997;20:1388–1395. doi: 10.2337/diacare.20.9.1388
    1. Perlmuter LC, Hakami MK, Hodgson‐Harrington C, Ginsberg J, Katz J, Singer DE, Nathan DM. Decreased cognitive function in aging non‐insulin‐dependent diabetic patients. Am J Med. 1984;77:1043–1048. doi: 10.1016/0002-9343(84)90186-4
    1. Tsai CK, Kao TW, Lee JT, Wu CJ, Hueng DY, Liang CS, Wang GC, Yang FC, Chen WL. Increased risk of cognitive impairment in patients with components of metabolic syndrome. Medicine. 2016;95:e4791. doi: 10.1097/MD.0000000000004791
    1. Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, McGovern P, Folsom AR. Cardiovascular risk factors and cognitive decline in middle‐aged adults. Neurology. 2001;56:42–48. doi: 10.1212/WNL.56.1.42
    1. Hartanto A, Yong JC. Measurement matters: higher waist‐to‐hip ratio but not body mass index is associated with deficits in executive functions and episodic memory. PeerJ. 2018;6:e5624. doi: 10.7717/peerj.5624
    1. Sellaro R, Colzato LS. High body mass index is associated with impaired cognitive control. Appetite. 2017;113:301–309. doi: 10.1016/j.appet.2017.03.008
    1. Lamar M, Rubin LH, Ajilore O, Charlton R, Zhang A, Yang S, Cohen J, Kumar A. What metabolic syndrome contributes to brain outcomes in African American & Caucasian cohorts. Curr Alzheimer Res. 2015;12:640–647. doi: 10.2174/1567205012666150701102325

Source: PubMed

3
Abonnere