Sleep Apnea and Sleep Habits: Relationships with Metabolic Syndrome

Anne-Laure Borel, Anne-Laure Borel

Abstract

Excess visceral adiposity is a primary cause of metabolic syndrome and often results from excess caloric intake and a lack of physical activity. Beyond these well-known etiologic factors, however, sleep habits and sleep apnea also seem to contribute to abdominal obesity and metabolic syndrome: Evidence suggests that sleep deprivation and behaviors linked to evening chronotype and social jetlag affect eating behaviors like meal preferences and eating times. When circadian rest and activity rhythms are disrupted, hormonal and metabolic regulations also become desynchronized, and this is known to contribute to the development of metabolic syndrome. The metabolic consequences of obstructive sleep apnea syndrome (OSAS) also contribute to incident metabolic syndrome. These observations, along with the first sleep intervention studies, have demonstrated that sleep is a relevant lifestyle factor that needs to be addressed along with diet and physical activity. Personalized lifestyle interventions should be tested in subjects with metabolic syndrome, based on their specific diet and physical activity habits, but also according to their circadian preference. The present review therefore focuses (i) on the role of sleep habits in the development of metabolic syndrome, (ii) on the reciprocal relationship between sleep apnea and metabolic syndrome, and (iii) on the results of sleep intervention studies.

Keywords: chronotype; metabolic syndrome; sleep; sleep apnea; sleep duration; sleep habit; social jetlag.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Schema showing the roles of intrinsic and extrinsic factors associated with evening chronotype in the risk of developing metabolic syndrome.
Figure 2
Figure 2
Bidirectional relationship between obstructive sleep apnea syndrome and metabolic syndrome. ROS, reactive oxygen species; IGF-1, insulin-like growth factor 1.

References

    1. Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C., Jr. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645.
    1. Sperling L.S., Mechanick J.I., Neeland I.J., Herrick C.J., Despres J.P., Ndumele C.E., Vijayaraghavan K., Handelsman Y., Puckrein G.A., Araneta M.R., et al. The CardioMetabolic Health Alliance: Working Toward a New Care Model for the Metabolic Syndrome. J. Am. Coll. Cardiol. 2015;66:1050–1067. doi: 10.1016/j.jacc.2015.06.1328.
    1. Despres J.P., Lemieux I. Abdominal Obesity and Metabolic Syndrome. Nature. 2006;444:881–887. doi: 10.1038/nature05488.
    1. Neeland I.J., Poirier P., Despres J.P. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation. 2018;137:1391–1406. doi: 10.1161/CIRCULATIONAHA.117.029617.
    1. Levy P., Kohler M., McNicholas W.T., Barb F., Mcevoy R.D., Somers V.K., Lavie L., Pepin J.L. Obstructive Sleep Apnoea Syndrome. Nat. Rev. Dis. Primers. 2015;1:15015. doi: 10.1038/nrdp.2015.15.
    1. Larcher S., Benhamou P.Y., Pepin J.L., Borel A.L. Sleep Habits and Diabetes. Diabetes Metab. 2015;41:263–271. doi: 10.1016/j.diabet.2014.12.004.
    1. Larcher S., Gauchez A.S., Lablanche S., Pepin J.L., Benhamou P.Y., Borel A.L. Impact of Sleep Behavior on Glycemic Control in Type 1 Diabetes: The Role of Social Jetlag. Eur. J. Endocrinol. 2016;175:411–419. doi: 10.1530/EJE-16-0188.
    1. Baehr E.K., Revelle W., Eastman C.I. Individual Differences in the Phase and Amplitude of the Human Circadian Temperature Rhythm: With an Emphasis on Morningness-Eveningness. J. Sleep Res. 2000;9:117–127. doi: 10.1046/j.1365-2869.2000.00196.x.
    1. Roenneberg T., Kuehnle T., Juda M., Kantermann T., Allebrandt K., Gordijn M., Merrow M. Epidemiology of the Human Circadian Clock. Sleep Med. Rev. 2007;11:429–438. doi: 10.1016/j.smrv.2007.07.005.
    1. Roenneberg T., Wirz-Justice A., Merrow M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythm. 2003;18:80–90. doi: 10.1177/0748730402239679.
    1. Horne J.A., Ostberg O. A Self-Assessment Questionnaire to Determine Morningness-Eveningness in Human Circadian Rhythms. Int. J. Chronobiol. 1976;4:97–110.
    1. Roenneberg T., Allebrandt K.V., Merrow M., Vetter C. Social Jetlag and Obesity. Curr. Biol. 2012;22:939–943. doi: 10.1016/j.cub.2012.03.038.
    1. Knutson K.L., Van Cauter E., Rathouz P.J., DeLeire T., Lauderdale D.S. Trends in the Prevalence of Short Sleepers in the USA: 1975–2006. Sleep. 2010;33:37–45. doi: 10.1093/sleep/33.1.37.
    1. Cappuccio F.P., Taggart F.M., Kandala N.B., Currie A., Peile E., Stranges S., Miller M.A. Meta-Analysis of Short Sleep Duration and Obesity in Children and Adults. Sleep. 2008;31:619–626. doi: 10.1093/sleep/31.5.619.
    1. Miller M.A., Kruisbrink M., Wallace J., Ji C., Cappuccio F.P. Sleep Duration and Incidence of Obesity in Infants, Children, and Adolescents: A Systematic Review and Meta-Analysis of Prospective Studies. Sleep. 2018;41 doi: 10.1093/sleep/zsy018.
    1. Magee L., Hale L. Longitudinal Associations between Sleep Duration and Subsequent Weight Gain: A Systematic Review. Sleep Med. Rev. 2012;16:231–241. doi: 10.1016/j.smrv.2011.05.005.
    1. Xi B., He D., Zhang M., Xue J., Zhou D. Short Sleep Duration Predicts Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2014;18:293–297. doi: 10.1016/j.smrv.2013.06.001.
    1. Pulido-Arjona L., Correa-Bautista J.E., Agostinis-Sobrinho C., Mota J., Santos R., Correa-Rodriguez M., Garcia-Hermoso A., Ramirez-Velez R. Role of Sleep Duration and Sleep-Related Problems in the Metabolic Syndrome Among Children and Adolescents. Ital. J. Pediatr. 2018;44:9. doi: 10.1186/s13052-018-0451-7.
    1. Lucas-De La Cruz L., Martin-Espinosa N., Cavero-Redondo I., Gonzalez-Garcia A., Diez-Fernandez A., Martinez-Vizcaino V., Notario-Pacheco B. Sleep Patterns and Cardiometabolic Risk in Schoolchildren from Cuenca, Spain. PLoS ONE. 2018;13:e0191637. doi: 10.1371/journal.pone.0191637.
    1. Deng H.B., Tam T., Zee B.C., Chung R.Y., Su X., Jin L., Chan T.C., Chang L.Y., Yeoh E.K., Lao X.Q. Short Sleep Duration Increases Metabolic Impact in Healthy Adults: A Population-Based Cohort Study. Sleep. 2017;40 doi: 10.1093/sleep/zsx130.
    1. Kim J.Y., Yadav D., Ahn S.V., Koh S.B., Park J.T., Yoon J., Yoo B.S., Lee S.H. A Prospective Study of Total Sleep Duration and Incident Metabolic Syndrome: The ARIRANG Study. Sleep Med. 2015;16:1511–1515. doi: 10.1016/j.sleep.2015.06.024.
    1. Song Q., Liu X., Zhou W., Wang X., Wu S. Changes in sleep Duration and Risk of Metabolic Syndrome: The Kailuan Prospective Study. Sci. Rep. 2016;6:36861. doi: 10.1038/srep36861.
    1. Fernandez-Mendoza J., He F., LaGrotte C., Vgontzas A.N., Liao D., Bixler E.O. Impact of the Metabolic Syndrome on Mortality is Modified by Objective Short Sleep Duration. J. Am. Heart Assoc. 2017;6 doi: 10.1161/JAHA.117.005479.
    1. Hege A., Lemke M.K., Apostolopoulos Y., Sonmez S. Occupational Health Disparities among U.S. long-Haul Truck Drivers: The Influence of Work Organization and Sleep on Cardiovascular and Metabolic Disease Risk. PLoS ONE. 2018;13:e0207322. doi: 10.1371/journal.pone.0207322.
    1. Itani O., Kaneita Y., Tokiya M., Jike M., Murata A., Nakagome S., Otsuka Y., Ohida T. Short Sleep Duration, Shift Work, and Actual Days Taken off Work are Predictive Life-Style Risk Factors for New-Onset Metabolic Syndrome: A Seven-Year Cohort Study of 40,000 Male Workers. Sleep Med. 2017;39:87–94. doi: 10.1016/j.sleep.2017.07.027.
    1. Maukonen M., Kanerva N., Partonen T., Mannisto S. Chronotype and Energy Intake Timing in Relation to Changes in Anthropometrics: A 7-Year Follow-Up Study in Adults. Chronobiol. Int. 2019;36:27–41. doi: 10.1080/07420528.2018.1515772.
    1. Zhang Y., Xiong Y., Dong J., Guo T., Tang X., Zhao Y. Caffeinated Drinks Intake, Late Chronotype, and Increased Body Mass Index among Medical Students in Chongqing, China: A Multiple Mediation Model. Int. J. Environ. Res. Public Health. 2018;15:1721. doi: 10.3390/ijerph15081721.
    1. Ruiz-Lozano T., Vidal J., De Hollanda A., Canteras M., Garaulet M., Izquierdo-Pulido M. Evening Chronotype Associates with Obesity in Severely Obese Subjects: Interaction with CLOCK 3111T/C. Int. J. Obes. 2016;40:1550–1557. doi: 10.1038/ijo.2016.116.
    1. Malone S.K., Zemel B., Compher C., Souders M., Chittams J., Thompson A.L., Pack A., Lipman T.H. Social Jet Lag, Chronotype and Body Mass Index in 14–17-Year-Old Adolescents. Chronobiol. Int. 2016;33:1255–1266. doi: 10.1080/07420528.2016.1196697.
    1. Yu J.H., Yun C.H., Ahn J.H., Suh S., Cho H.J., Lee S.K., Yoo H.J., Seo J.A., Kim S.G., Choi K.M., et al. Evening Chronotype is Associated with Metabolic Disorders and Body Composition in Middle-Aged Adults. J. Clin. Endocrinol. Metab. 2015;100:1494–1502. doi: 10.1210/jc.2014-3754.
    1. Vera B., Dashti H.S., Gomez-Abellan P., Hernandez-Martinez A.M., Esteban A., Scheer F., Saxena R., Garaulet M. Modifiable Lifestyle Behaviors, but not a Genetic Risk Score, Associate with Metabolic Syndrome in Evening Chronotypes. Sci. Rep. 2018;8:945. doi: 10.1038/s41598-017-18268-z.
    1. McMahon D.M., Burch J.B., Youngstedt S.D., Wirth M.D., Hardin J.W., Hurley T.G., Blair S.N., Hand G.A., Shook R.P., Drenowatz C., et al. Relationships between Chronotype, Social Jetlag, Sleep, Obesity and Blood Pressure in Healthy Young Adults. Chronobiol. Int. 2019;36:493–509. doi: 10.1080/07420528.2018.1563094.
    1. Marinac C.R., Quante M., Mariani S., Weng J., Redline S., Cespedes Feliciano E.M., Hipp J.A., Wang D., Kaplan E.R., James P., et al. Associations between Timing of Meals, Physical Activity, Light Exposure, and Sleep With Body Mass Index in Free-Living Adults. J. Phys. Act. Health. 2019;16:214–221. doi: 10.1123/jpah.2017-0389.
    1. Yetish G., Kaplan H., Gurven M., Wood B., Pontzer H., Manger P.R., Wilson C., McGregor R., Siegel J.M. Natural Sleep and its Seasonal Variations in Three Pre-Industrial Societies. Curr. Biol. 2015;25:2862–2868. doi: 10.1016/j.cub.2015.09.046.
    1. Lopez-Minguez J., Ordonana J.R., Sanchez-Romera J.F., Madrid J.A., Garaulet M. Circadian System Heritability as Assessed by Wrist Temperature: A Twin Study. Chronobiol. Int. 2015;32:71–80. doi: 10.3109/07420528.2014.955186.
    1. Lane J.M., Vlasac I., Anderson S.G., Kyle S.D., Dixon W.G., Bechtold D.A., Gill S., Little M.A., Luik A., Loudon A., et al. Genome-Wide Association Analysis Identifies Novel Loci for Chronotype in 100,420 Individuals from the UK Biobank. Nat. Commun. 2016;7:10889. doi: 10.1038/ncomms10889.
    1. Jones S.E., Tyrrell J., Wood A.R., Beaumont R.N., Ruth K.S., Tuke M.A., Yaghootkar H., Hu Y., Teder-Laving M., Hayward C., et al. Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. PLoS Genet. 2016;12:e1006125. doi: 10.1371/journal.pgen.1006125.
    1. Hu Y., Shmygelska A., Tran D., Eriksson N., Tung J.Y., Hinds D.A. GWAS of 89,283 Individuals Identifies Genetic Variants Associated with Self-Reporting of being a Morning Person. Nat. Commun. 2016;7:10448. doi: 10.1038/ncomms10448.
    1. Goel N. Genetic Markers of Sleep and Sleepiness. Sleep Med. Clin. 2017;12:289–299. doi: 10.1016/j.jsmc.2017.03.005.
    1. Guerrero-Vargas N.N., Espitia-Bautista E., Buijs R.M., Escobar C. Shift-Work: Is Time of Eating Determining Metabolic Health? Evidence from Animal Models. Proc. Nutr. Soc. 2018;77:199–215. doi: 10.1017/S0029665117004128.
    1. Maukonen M., Kanerva N., Partonen T., Kronholm E., Tapanainen H., Kontto J., Mannisto S. Chronotype Differences in Timing of Energy and Macronutrient Intakes: A Population-Based Study in Adults. Obesity. 2017;25:608–615. doi: 10.1002/oby.21747.
    1. Xiao Q., Garaulet M., Scheer F. Meal Timing and Obesity: Interactions with Macronutrient Intake and Chronotype. Int. J. Obes. 2019;43:1701–1711. doi: 10.1038/s41366-018-0284-x.
    1. Reutrakul S., Hood M.M., Crowley S.J., Morgan M.K., Teodori M., Knutson K.L. The Relationship between Breakfast Skipping, Chronotype, and Glycemic Control in Type 2 Diabetes. Chronobiol. Int. 2014;31:64–71. doi: 10.3109/07420528.2013.821614.
    1. Kandeger A., Selvi Y., Tanyer D.K. The Effects of Individual Circadian Rhythm Differences on Insomnia, Impulsivity, and Food Addiction. Eat. Weight Disord. 2019;24:47–55. doi: 10.1007/s40519-018-0518-x.
    1. Maukonen M., Kanerva N., Partonen T., Kronholm E., Konttinen H., Wennman H., Mannisto S. The Associations between Chronotype, a Healthy Diet and Obesity. Chronobiol. Int. 2016;33:972–981. doi: 10.1080/07420528.2016.1183022.
    1. Mota M.C., Waterhouse J., De-Souza D.A., Rossato L.T., Silva C.M., Araujo M.B., Tufik S., De Mello M.T., Crispim C.A. Association between Chronotype, Food Intake and Physical Activity in Medical Residents. Chronobiol. Int. 2016;33:730–739. doi: 10.3109/07420528.2016.1167711.
    1. Patterson F., Malone S.K., Lozano A., Grandner M.A., Hanlon A.L. Smoking, Screen-Based Sedentary Behavior, and Diet Associated with Habitual Sleep Duration and Chronotype: Data from the UK Biobank. Ann. Behav. Med. 2016;50:715–726. doi: 10.1007/s12160-016-9797-5.
    1. Wennman H., Kronholm E., Partonen T., Peltonen M., Vasankari T., Borodulin K. Evening Typology and Morning Tiredness Associates with Low Leisure Time Physical Activity and High Sitting. Chronobiol. Int. 2015;32:1090–1100. doi: 10.3109/07420528.2015.1063061.
    1. Olds T.S., Maher C.A., Matricciani L. Sleep Duration or Bedtime? Exploring the Relationship between Sleep Habits and Weight Status and Activity Patterns. Sleep. 2011;34:1299–1307. doi: 10.5665/SLEEP.1266.
    1. Dashti H.S., Redline S., Saxena R. Polygenic Risk Score Identifies Associations between Sleep Duration and Diseases Determined from an Electronic Medical Record Biobank. Sleep. 2019;42 doi: 10.1093/sleep/zsy247.
    1. Corella D., Asensio E.M., Coltell O., Sorli J.V., Estruch R., Martinez-Gonzalez M.A., Salas-Salvado J., Castaner O., Aros F., Lapetra J., et al. CLOCK Gene Variation is Associated with Incidence of Type-2 Diabetes and Cardiovascular Diseases in Type-2 Diabetic Subjects: Dietary Modulation in the PREDIMED Randomized Trial. Cardiovasc. Diabetol. 2016;15:4. doi: 10.1186/s12933-015-0327-8.
    1. Dashti H.S., Follis J.L., Smith C.E., Tanaka T., Garaulet M., Gottlieb D.J., Hruby A., Jacques P.F., Kiefte-De Jong J.C., Lamon-Fava S., et al. Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits. Diabetes Care. 2015;38:1456–1466. doi: 10.2337/dc14-2709.
    1. Balachandran J.S., Patel S.R. In the Clinic. Obstructive Sleep Apnea. Ann. Intern. Med. 2014;161 doi: 10.7326/0003-4819-161-9-201411040-01005.
    1. Tregear S., Reston J., Schoelles K., Phillips B. Obstructive Sleep Apnea and Risk of Motor Vehicle Crash: Systematic Review and Meta-Analysis. J. Clin. Sleep Med. 2009;5:573–581.
    1. Mulgrew A.T., Nasvadi G., Butt A., Cheema R., Fox N., Fleetham J.A., Ryan C.F., Cooper P., Ayas N.T. Risk and Severity of Motor Vehicle Crashes in Patients with Obstructive Sleep Apnoea/Hypopnoea. Thorax. 2008;63:536–541. doi: 10.1136/thx.2007.085464.
    1. Mazza S., Pepin J.L., Naegele B., Rauch E., Deschaux C., Ficheux P., Levy P. Driving Ability in Sleep Apnoea Patients before and after CPAP Treatment: Evaluation on a Road Safety Platform. Eur. Respir. J. 2006;28:1020–1028. doi: 10.1183/09031936.06.00112905.
    1. Drager L.F., Togeiro S.M., Polotsky V.Y., Lorenzi-Filho G. Obstructive Sleep Apnea: A Cardiometabolic Risk in Obesity and the Metabolic Syndrome. J. Am. Coll. Cardiol. 2013;62:569–576. doi: 10.1016/j.jacc.2013.05.045.
    1. Resta O., Foschino-Barbaro M.P., Legari G., Talamo S., Bonfitto P., Palumbo A., Minenna A., Giorgino R., De Pergola G. Sleep-Related Breathing Disorders, Loud Snoring and Excessive Daytime Sleepiness in Obese Subjects. Int. J. Obes. Relat. Metab. Disord. 2001;25:669–675. doi: 10.1038/sj.ijo.0801603.
    1. Pepin J.L., Borel A.L., Tamisier R., Baguet J.P., Levy P., Dauvilliers Y. Hypertension and Sleep: Overview of a Tight Relationship. Sleep Med. Rev. 2014;18:509–599. doi: 10.1016/j.smrv.2014.03.003.
    1. Borel A.L., Monneret D., Tamisier R., Baguet J.P., Faure P., Levy P., Halimi S., Pepin J.L. The Severity of Nocturnal Hypoxia but not Abdominal Adiposity is Associated with Insulin Resistance in non-Obese Men with Sleep Apnea. PLoS ONE. 2013;8:e71000. doi: 10.1371/journal.pone.0071000.
    1. Borel A.L., Tamisier R., Bohme P., Priou P., Avignon A., Benhamou P.Y., Hanaire H., Pepin J.L., Kessler L., Valensi P., et al. Obstructive Sleep Apnoea Syndrome in Patients Living with Diabetes: Which Patients should be Screened? Diabetes Metab. 2018 doi: 10.1016/j.diabet.2018.08.006.
    1. Qian Y., Xu H., Wang Y., Yi H., Guan J., Yin S. Obstructive Sleep Apnea Predicts Risk of Metabolic Syndrome Independently of Obesity: A Meta-Analysis. Arch. Med. Sci. 2016;12:1077–1087. doi: 10.5114/aoms.2016.61914.
    1. Hirotsu C., Haba-Rubio J., Togeiro S.M., Marques-Vidal P., Drager L.F., Vollenweider P., Waeber G., Bittencourt L., Tufik S., Heinzer R. Obstructive Sleep Apnoea as a Risk Factor for Incident Metabolic Syndrome: A Joined Episono and HypnoLaus Prospective Cohorts Study. Eur. Respir. J. 2018;52 doi: 10.1183/13993003.01150-2018.
    1. Fletcher E.C. Sympathetic over Activity in the Etiology of Hypertension of Obstructive Sleep Apnea. Sleep. 2003;26:15–19. doi: 10.1093/sleep/26.1.15.
    1. Somers V.K., Dyken M.E., Clary M.P., Abboud F.M. Sympathetic Neural Mechanisms in Obstructive Sleep Apnea. J. Clin. Investig. 1995;96:1897–1904. doi: 10.1172/JCI118235.
    1. Ryan S., Mc Nicholas W.T. Intermittent Hypoxia and Activation of Inflammatory Molecular Pathways in OSAS. Arch. Physiol. Biochem. 2008;114:261–266. doi: 10.1080/13813450802307337.
    1. Ryan S., Taylor C.T., Mc Nicholas W.T. Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome. Circulation. 2005;112:2660–2667. doi: 10.1161/CIRCULATIONAHA.105.556746.
    1. Ryan S., Taylor C.T., Mc Nicholas W.T. Systemic Inflammation: A Key Factor in the Pathogenesis of Cardiovascular Complications in Obstructive Sleep Apnoea Syndrome? Thorax. 2009;64:631–636. doi: 10.1136/thx.2008.105577.
    1. Arnaud C., Beguin P.C., Lantuejoul S., Pepin J.L., Guillermet C., Pelli G., Burger F., Buatois V., Ribuot C., Baguet J.P., et al. The Inflammatory Preatherosclerotic Remodeling Induced by Intermittent Hypoxia is Attenuated by RANTES/CCL5 inhibition. Am. J. Respir. Crit. Care. Med. 2011;184:724–731. doi: 10.1164/rccm.201012-2033OC.
    1. Jelic S., Padeletti M., Kawut S.M., Higgins C., Canfield S.M., Onat D., Colombo P.C., Basner R.C., Factor P., LeJemtel T.H. Inflammation, Oxidative Stress, and Repair Capacity of the Vascular Endothelium in Obstructive Sleep Apnea. Circulation. 2008;117:2270–2278. doi: 10.1161/CIRCULATIONAHA.107.741512.
    1. Lee Y.S., Kim J.W., Osborne O., Oh D.Y., Sasik R., Schenk S., Chen A., Chung H., Murphy A., Watkins S.M., et al. Increased Adipocyte O2 Consumption Triggers HIF-1alpha, Causing Inflammation and Insulin Resistance in Obesity. Cell. 2014;157:1339–1352. doi: 10.1016/j.cell.2014.05.012.
    1. Poulain L., Thomas A., Rieusset J., Casteilla L., Levy P., Arnaud C., Dematteis M. Visceral white Fat Remodelling Contributes to Intermittent Hypoxia-Induced Atherogenesis. Eur. Respir. J. 2014;43:513–522. doi: 10.1183/09031936.00019913.
    1. Leproult R., Copinschi G., Buxton O., Van Cauter E. Sleep Loss Results in an Elevation of Cortisol Levels the next Evening. Sleep. 1997;20:865–870.
    1. Vgontzas A.N., Pejovic S., Zoumakis E., Lin H.M., Bentley C.M., Bixler E.O., Sarrigiannidis A., Basta M., Chrousos G.P. Hypothalamic-Pituitary-Adrenal Axis Activity in Obese Men with and without Sleep Apnea: Effects of Continuous Positive Airway Pressure Therapy. J. Clin. Endocrinol. Metab. 2007;92:4199–4207. doi: 10.1210/jc.2007-0774.
    1. Bratel T., Wennlund A., Carlstrom K. Pituitary Reactivity, Androgens and Catecholamines in Obstructive Sleep Apnoea. Effects of Continuous Positive Airway Pressure Treatment (CPAP) Respir. Med. 1999;93:1–7. doi: 10.1016/S0954-6111(99)90068-9.
    1. Leproult R., Van Cauter E. Role of Sleep and Sleep Loss in Hormonal Release and Metabolism. Endocr. Dev. 2010;17:11–21.
    1. Hotamisligil G.S. Inflammation and Metabolic Disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485.
    1. Xu H., Barnes G.T., Yang Q., Tan G., Yang D., Chou C.J., Sole J., Nichols A., Ross J.S., Tartaglia L.A., et al. Chronic Inflammation in Fat Plays a Crucial Role in the Development of Obesity-Related Insulin Resistance. J. Clin. Investig. 2003;112:1821–1830. doi: 10.1172/JCI200319451.
    1. Vgontzas A.N., Zoumakis E., Lin H.M., Bixler E.O., Trakada G., Chrousos G.P. Marked Decrease in Sleepiness in Patients with Sleep Apnea by Etanercept, a Tumor Necrosis Factor-Alpha Antagonist. J. Clin. Endocrinol. Metab. 2004;89:4409–4413. doi: 10.1210/jc.2003-031929.
    1. Jiang P., Turek F.W. Timing of Meals: When is as Critical as what and how much. Am. J. Physiol. Endocrinol. Metab. 2017;312:E369–E380. doi: 10.1152/ajpendo.00295.2016.
    1. Bandin C., Scheer F.A., Luque A.J., Avila-Gandia V., Zamora S., Madrid J.A., Gomez-Abellan P., Garaulet M. Meal Timing Affects Glucose Tolerance, Substrate Oxidation and Circadian-Related Variables: A Randomized, Crossover Trial. Int. J. Obes. 2015;39:828–833. doi: 10.1038/ijo.2014.182.
    1. Gill S., Panda S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015;22:789–798. doi: 10.1016/j.cmet.2015.09.005.
    1. Henst R.H.P., Pienaar P.R., Roden L.C., Rae D.E. The Effects of Sleep Extension on Cardiometabolic Risk Factors: A Systematic Review. J. Sleep Res. 2019:e12865. doi: 10.1111/jsr.12865.
    1. Al Khatib H.K., Hall W.L., Creedon A., Ooi E., Masri T., McGowan L., Harding S.V., Darzi J., Pot G.K. Sleep Extension is a Feasible Lifestyle Intervention in Free-Living Adults who are Habitually Short Sleepers: A Potential Strategy for Decreasing Intake of Free Sugars? A Randomized Controlled Pilot Study. Am. J. Clin. Nutr. 2018;107:43–53. doi: 10.1093/ajcn/nqx030.
    1. Tasali E., Chapotot F., Wroblewski K., Schoeller D. The Effects of Extended Bedtimes on Sleep Duration and Food Desire in Overweight Young Adults: A Home-Based Intervention. Appetite. 2014;80:220–224. doi: 10.1016/j.appet.2014.05.021.
    1. So-Ngern A., Chirakalwasan N., Saetung S., Chanprasertyothin S., Thakkinstian A., Reutrakul S. Effects of Two-Week Sleep Extension on Glucose Metabolism in Chronically Sleep-Deprived Individuals. J. Clin. Sleep Med. 2019;15:711–718. doi: 10.5664/jcsm.7758.
    1. Yang P.Y., Ho K.H., Chen H.C., Chien M.Y. Exercise Training Improves Sleep Quality in Middle-Aged and Older Adults with Sleep Problems: A Systematic Review. J. Physiother. 2012;58:157–163. doi: 10.1016/S1836-9553(12)70106-6.
    1. Reynolds A.N., Mann J.I., Williams S., Venn B.J. Advice to Walk after Meals is more Effective for Lowering Postprandial Glycaemia in Type 2 Diabetes Mellitus than Advice that does not Specify Timing: A Randomised Crossover Study. Diabetologia. 2016;59:2572–2578. doi: 10.1007/s00125-016-4085-2.
    1. Borror A., Zieff G., Battaglini C., Stoner L. The Effects of Postprandial Exercise on Glucose Control in Individuals with Type 2 Diabetes: A Systematic Review. Sports Med. 2018;48:1479–1491. doi: 10.1007/s40279-018-0864-x.
    1. Sullivan C.E., Issa F.G., Berthon-Jones M., Eves L. Reversal of Obstructive Sleep Apnoea by Continuous Positive Airway Pressure Applied Through the Nares. Lancet. 1981;1:862–865. doi: 10.1016/S0140-6736(81)92140-1.
    1. McDaid C., Griffin S., Weatherly H., Duree K., Van Der Burgt M., Van Hout S., Akers J., Davies R.J., Sculpher M., Westwood M. Continuous Positive Airway Pressure Devices for the Treatment of Obstructive Sleep Apnoea-Hypopnoea Syndrome: A Systematic Review and Economic Analysis. Health Technol. Assess. 2009;13:iii–iv, xi–xiv, 1–119, 143–274. doi: 10.3310/hta13040.
    1. Peppard P.E., Young T., Palta M., Dempsey J., Skatrud J. Longitudinal Study of Moderate Weight Change and Sleep-Disordered Breathing. JAMA. 2000;284:3015–3021. doi: 10.1001/jama.284.23.3015.
    1. Drager L.F., Brunoni A.R., Jenner R., Lorenzi-Filho G., Bensenor I.M., Lotufom P.A. Effects of CPAP on Body Weight in Patients with Obstructive Sleep Apnoea: A Meta-Analysis of Randomised Trials. Thorax. 2015;70:258–264. doi: 10.1136/thoraxjnl-2014-205361.
    1. Hoyos C.M., Killick R., Yee B.J., Phillips C.L., Grunstein R.R., Liu P.Y. Cardiometabolic Changes after Continuous Positive Airway Pressure for Obstructive Sleep Apnoea: A Randomised Sham-Controlled Study. Thorax. 2012;67:1081–1089. doi: 10.1136/thoraxjnl-2011-201420.
    1. Furlan S.F., Braz C.V., Lorenzi-Filho G., Drager L.F. Management of Hypertension in Obstructive Sleep Apnea. Curr. Cardiol. Rep. 2015;17:108. doi: 10.1007/s11886-015-0663-z.
    1. Liu L., Cao Q., Guo Z., Dai Q. Continuous Positive Airway Pressure in Patients With Obstructive Sleep Apnea and Resistant Hypertension: A Meta-Analysis of Randomized Controlled Trials. J. Clin. Hypertens. 2016;18:153–158. doi: 10.1111/jch.12639.
    1. Yang D., Liu Z., Yang H., Luo Q. Effects of Continuous Positive Airway Pressure on Glycemic Control and Insulin Resistance in Patients with Obstructive Sleep Apnea: A Meta-Analysis. Sleep Breath. 2013;17:33–38. doi: 10.1007/s11325-012-0680-8.
    1. Weinstock T.G., Wang X., Rueschman M., Ismail-Beigi F., Aylor J., Babineau D.C., Mehra R., Redline S. A Controlled Trial of CPAP Therapy on Metabolic Control in Individuals with Impaired Glucose Tolerance and Sleep Apnea. Sleep. 2012;35:617–625B. doi: 10.5665/sleep.1816.
    1. Coughlin S.R., Mawdsley L., Mugarza J.A., Wilding J.P., Calverley P.M. Cardiovascular and Metabolic Effects of CPAP in Obese Males with OSA. Eur. Respir. J. 2007;29:720–727. doi: 10.1183/09031936.00043306.
    1. Craig S.E., Kohler M., Nicoll D., Bratton D.J., Nunn A., Davies R., Stradling J. Continuous Positive Airway Pressure Improves Sleepiness but not Calculated Vascular Risk in Patients with Minimally Symptomatic Obstructive Sleep Apnoea: The MOSAIC Randomised Controlled Trial. Thorax. 2012;67:1090–1096. doi: 10.1136/thoraxjnl-2012-202178.
    1. Yu J., Zhou Z., McEvoy R.D., Anderson C.S., Rodgers A., Perkovic V., Neal B. Association of Positive Airway Pressure with Cardiovascular Events and Death in Adults With Sleep Apnea: A Systematic Review and Meta-analysis. JAMA. 2017;318:156–166. doi: 10.1001/jama.2017.7967.
    1. Borel A.L., Leblanc X., Almeras N., Tremblay A., Bergeron J., Poirier P., Despres J.P., Series F. Sleep Apnoea Attenuates the Effects of a Lifestyle Intervention Programme in Men with Visceral Obesity. Thorax. 2012;67:735–741. doi: 10.1136/thoraxjnl-2011-201001.
    1. Chirinos J.A., Gurubhagavatula I., Teff K., Rader D.J., Wadden T.A., Townsend R., Foster G.D., Maislin G., Saif H., Broderick P., et al. CPAP, Weight Loss, or Both for Obstructive Sleep Apnea. N. Engl. J. Med. 2014;370:2265–2275. doi: 10.1056/NEJMoa1306187.

Source: PubMed

3
Abonnere