Cross-sectional and longitudinal associations of different sedentary behaviors with cognitive performance in older adults

Emmanuelle Kesse-Guyot, Hélène Charreire, Valentina A Andreeva, Mathilde Touvier, Serge Hercberg, Pilar Galan, Jean-Michel Oppert, Emmanuelle Kesse-Guyot, Hélène Charreire, Valentina A Andreeva, Mathilde Touvier, Serge Hercberg, Pilar Galan, Jean-Michel Oppert

Abstract

Background: The deleterious health effects of sedentary behaviors, independent of physical activity, are increasingly being recognized. However, associations with cognitive performance are not known.

Purpose: To estimate the associations between different sedentary behaviors and cognitive performance in healthy older adults.

Methods: Computer use, time spent watching television (TV), time spent reading and habitual physical activity levels were self-reported twice (in 2001 and 2007) by participants in the SUpplémentation en Vitamines et MinérauX (SU.VI.MAX and SU.VI.MAX2) study. Cognitive performance was assessed at follow-up (in 2007-2009) via a battery of 6 neuropsychological tests used to derive verbal memory and executive functioning scores. Analyses (ANCOVA) were performed among 1425 men and 1154 women aged 65.6 ± 4.5 at the time of the neuropsychological evaluation. We estimated mean differences with 95% confidence intervals (95%CI) in cognitive performance across categories of each type of sedentary behavior.

Results: In multivariable cross-sectional models, compared to non-users, participants using the computer for >1 h/day displayed better verbal memory (mean difference=1.86; 95%CI: 0.95, 2.77) and executive functioning (mean difference=2.15; 95%CI: 1.22, 3.08). A negative association was also observed between TV viewing and executive functioning. Additionally, participants who increased their computer use by more than 30 min between 2001 and 2007 showed better performance on both verbal memory (mean difference=1.41; 95%CI: 0.55, 2.27) and executive functioning (mean difference=1.41; 95%CI: 0.53, 2.28) compared to those who decreased their computer use during that period.

Conclusion: Specific sedentary behaviors are differentially associated with cognitive performance. In contrast to TV viewing, regular computer use may help maintain cognitive function during the aging process.

Clinical trial registration: clinicaltrial.gov (number NCT00272428).

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Middleton LE, Yaffe K (2009) Promising strategies for the prevention of dementia. Arch Neurol 66: 1210–1215.
    1. Plassman BL, Williams JW Jr, Burke JR, Holsinger T, Benjamin S (2010) Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med 153: 182–193.
    1. Coley N, Andrieu S, Gardette V, Gillette-Guyonnet S, Sanz C, et al. (2008) Dementia prevention: methodological explanations for inconsistent results. Epidemiol Rev 30: 35–66.
    1. Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, et al. (2011) Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 269: 107–117.
    1. Jedrziewski MK, Lee VM, Trojanowski JQ (2007) Physical activity and cognitive health. Alzheimers Dement 3: 98–108.
    1. Rockwood K, Middleton L (2007) Physical activity and the maintenance of cognitive function. Alzheimers Dement 3: S38–S44.
    1. Mortimer JA, Borenstein AR, Gosche KM, Snowdon DA (2005) Very early detection of Alzheimer neuropathology and the role of brain reserve in modifying its clinical expression. J Geriatr Psychiatry Neurol 18: 218–223.
    1. Singh-Manoux A, Kivimaki M (2010) The importance of cognitive aging for understanding dementia. Age (Dordr) 32: 509–512.
    1. Hughes T, Ganguli M (2010) Modifiable midlife risk factors for late-life dementia. Rev Neurol 51: 259–262.
    1. Biddle SJ (2007) Sedentary behavior. Am J Prev Med 33: 502–504.
    1. Rhodes RE, Mark RS, Temmel CP (2012) Adult sedentary behavior: a systematic review. Am J Prev Med 42: e3–28.
    1. Thorp AA, Owen N, Neuhaus M, Dunstan DW (2011) Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med 41: 207–215.
    1. Proper KI, Singh AS, van MW, Chinapaw MJ (2011) Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med 40: 174–182.
    1. Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, et al. (2011) Adults' sedentary behavior determinants and interventions. Am J Prev Med 41: 189–196.
    1. Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, et al. (2012) Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS One 7: e34916.
    1. Pate RR, O'Neill JR, Lobelo F (2008) The evolving definition of “sedentary”. Exerc Sport Sci Rev 36: 173–178.
    1. Grontved A, Hu FB (2011) Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA 305: 2448–2455.
    1. Wilson RS, Barnes LL, Aggarwal NT, Boyle PA, Hebert LE, et al. (2010) Cognitive activity and the cognitive morbidity of Alzheimer disease. Neurology 75: 990–996.
    1. Singh-Manoux A, Richards M, Marmot M (2003) Leisure activities and cognitive function in middle age: evidence from the Whitehall II study. J Epidemiol Community Health 57: 907–913.
    1. Fabrigoule C, Letenneur L, Dartigues JF, Zarrouk M, Commenges D, et al. (1995) Social and leisure activities and risk of dementia: a prospective longitudinal study. J Am Geriatr Soc 43: 485–490.
    1. Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, et al. (2003) Leisure activities and the risk of dementia in the elderly. N Engl J Med 348: 2508–2516.
    1. Verghese J, LeValley A, Derby C, Kuslansky G, Katz M, et al. (2006) Leisure activities and the risk of amnestic mild cognitive impairment in the elderly. Neurology 66: 821–827.
    1. Verghese J, Cuiling W, Katz MJ, Sanders A, Lipton RB (2009) Leisure activities and risk of vascular cognitive impairment in older adults. J Geriatr Psychiatry Neurol 22: 110–118.
    1. Iwasa H, Yoshida Y, Kai I, Suzuki T, Kim H, et al. (2012) Leisure activities and cognitive function in elderly community-dwelling individuals in Japan: A 5-year prospective cohort study. J Psychosom Res 72: 159–164.
    1. Akbaraly TN, Portet F, Fustinoni S, Dartigues JF, Artero S, et al. (2009) Leisure activities and the risk of dementia in the elderly: results from the Three-City Study. Neurology 73: 854–861.
    1. Rundek T, Bennett DA (2006) Cognitive leisure activities, but not watching TV, for future brain benefits. Neurology 66: 794–795.
    1. Wang HX, Karp A, Winblad B, Fratiglioni L (2002) Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen project. Am J Epidemiol 155: 1081–1087.
    1. Wang JY, Zhou DH, Li J, Zhang M, Deng J, et al. (2006) Leisure activity and risk of cognitive impairment: the Chongqing aging study. Neurology 66: 911–913.
    1. Wilson RS, Bennett DA, Bienias JL, Mendes de Leon CF, Morris MC, et al. (2003) Cognitive activity and cognitive decline in a biracial community population. Neurology 61: 812–816.
    1. Wilson RS, Bennett DA, Bienias JL, Aggarwal NT, Mendes de Leon CF, et al. (2002) Cognitive activity and incident AD in a population-based sample of older persons. Neurology 59: 1910–1914.
    1. Wilson RS, Mendes de Leon CF, Barnes LL, Schneider JA, Bienias JL, et al. (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 287: 742–748.
    1. Hercberg S, Galan P, Preziosi P, Roussel AM, Arnaud J, et al. (1998) Background and rationale behind the SU.VI.MAX Study, a prevention trial using nutritional doses of a combination of antioxidant vitamins and minerals to reduce cardiovascular diseases and cancers. SUpplementation en VItamines et Mineraux AntioXydants Study. Int J Vitam Nutr Res 68: 3–20.
    1. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, et al. (2004) The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164: 2335–2342.
    1. Kesse-Guyot E, Fezeu L, Jeandel C, Ferry M, Andreeva V, et al.. (2011) French adults' cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the Supplementation in Vitamins and Mineral Antioxidants (SU.VI.MAX) trial. Am J Clin Nutr.
    1. Lezak, M D., Howieson, D B., and Loring, D W. (2004) Neuropsychological Assessment. New York, NY: Oxford University Press.
    1. Ivanoiu A, Adam S, Van der LM, Salmon E, Juillerat AC, et al. (2005) Memory evaluation with a new cued recall test in patients with mild cognitive impairment and Alzheimer's disease. J Neurol 252: 47–55.
    1. Wechsler D. (1981) Wechsler Adult Intelligence Scale-Revised. New York, NY: Psychological Corporation.
    1. Delis DC., Kaplan E., and Kramer JH. (2001) Delis-Kaplan Executive Function System (D-KEFS) examiner's manual. San Antonio, TX: The Psychological Corporation.
    1. Vuillemin A, Oppert JM, Guillemin F, Essermeant L, Fontvieille AM, et al. (2000) Self-administered questionnaire compared with interview to assess past-year physical activity. Med Sci Sports Exerc 32: 1119–1124.
    1. Bertrais S, Beyeme-Ondoua JP, Czernichow S, Galan P, Hercberg S, et al. (2005) Sedentary behaviors, physical activity, and metabolic syndrome in middle-aged French subjects. Obes Res 13: 936–944.
    1. Kriska AM, Knowler WC, LaPorte RE, Drash AL, Wing RR, et al. (1990) Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care 13: 401–411.
    1. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346: 393–403.
    1. Pereira MA, FitzerGerald SJ, Gregg EW, Joswiak ML, Ryan WJ, et al. (1997) A collection of Physical Activity Questionnaires for health-related research. Med Sci Sports Exerc 29: S1–205.
    1. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, et al. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32: S498–S504.
    1. Radloff L (1977) The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl Psychol Meas 1: 385–401.
    1. Kesse-Guyot E, Fezeu L, Andreeva VA, Touvier M, Scalbert A, et al. (2012) Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr 142: 76–83.
    1. Kesse-Guyot E, Amieva H, Castetbon K, Henegar A, Ferry M, et al. (2011) Adherence to nutritional recommendations and subsequent cognitive performance: findings from the prospective Supplementation with Antioxidant Vitamins and Minerals 2 (SU.VI.MAX 2) study. Am J Clin Nutr 93: 200–210.
    1. Tun PA, Lachman ME (2010) The association between computer use and cognition across adulthood: use it so you won't lose it? Psychol Aging 25: 560–568.
    1. Czaja SJ, Charness N, Fisk AD, Hertzog C, Nair SN, et al. (2006) Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychol Aging 21: 333–352.
    1. Tucker AM, Stern Y (2011) Cognitive reserve in aging. Curr Alzheimer Res 8: 354–360.
    1. Clark BK, Sugiyama T, Healy GN, Salmon J, Dunstan DW, et al. (2009) Validity and reliability of measures of television viewing time and other non-occupational sedentary behaviour of adults: a review. Obes Rev 10: 7–16.

Source: PubMed

3
Abonnere