Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy

Teresa Coelho, Luis F Maia, Ana Martins da Silva, Márcia W Cruz, Violaine Planté-Bordeneuve, Ole B Suhr, Isabel Conceiçao, Hartmut H-J Schmidt, Pedro Trigo, Jeffery W Kelly, Richard Labaudinière, Jason Chan, Jeff Packman, Donna R Grogan, Teresa Coelho, Luis F Maia, Ana Martins da Silva, Márcia W Cruz, Violaine Planté-Bordeneuve, Ole B Suhr, Isabel Conceiçao, Hartmut H-J Schmidt, Pedro Trigo, Jeffery W Kelly, Richard Labaudinière, Jason Chan, Jeff Packman, Donna R Grogan

Abstract

Tafamidis, a transthyretin (TTR) kinetic stabilizer, delayed neuropathic progression in patients with Val30Met TTR familial amyloid polyneuropathy (TTR-FAP) in an 18-month randomized controlled trial (study Fx-005). This 12-month, open-label extension study evaluated the long-term safety, tolerability, and efficacy of tafamidis 20 mg once daily in 86 patients who earlier received blinded treatment with tafamidis or placebo. Efficacy measures included the Neuropathy Impairment Score in the Lower Limbs (NIS-LL), Norfolk Quality of Life-Diabetic Neuropathy total quality of life (TQOL) score, and changes in neurologic function and nutritional status. We quantified the monthly rates of change in efficacy measures, and TTR stabilization, and monitored adverse events (AEs). Patients who continued on tafamidis had stable rates of change in NIS-LL (from 0.08 to 0.11/month; p = 0.60) and TQOL (from -0.03 to 0.25; p = 0.16). In patients switched from placebo, the monthly rate of change in NIS-LL declined (from 0.34 to 0.16/month; p = 0.01), as did TQOL score (from 0.61 to -0.16; p < 0.001). Patients treated with tafamidis for 30 months had 55.9 % greater preservation of neurologic function as measured by the NIS-LL than patients in whom tafamidis was initiated later. Plasma TTR was stabilized in 94.1 % of patients treated with tafamidis for 30 months. AEs were similar between groups; no patients discontinued because of an AE. Long-term tafamidis was well tolerated, with the reduced rate of neurologic deterioration sustained over 30 months. Tafamidis also slowed neurologic impairment in patients previously given placebo, but treatment benefits were greater when tafamidis was begun earlier.

Trial registration: ClinicalTrials.gov NCT00791492.

Figures

Fig. 1
Fig. 1
Patient disposition and analysis populations
Fig. 2
Fig. 2
Sustainability of the treatment effect, as measured by the mean rate of change per month for each efficacy measure in the tafamidis–tafamidis ITT population. a NIS-LL. b Σ7 NTs nds score. c Σ3 NTSF nds. d TQOL. e mBMI. For comparison, the 30-month rate of change from Fx-005 baseline for the tafamidis–tafamidis group (n = 38) is also displayed for each endpoint. Σ7 NTs nds summated 7 nerve tests normal deviate score, Σ3 NTSF nds summated 3 nerve tests (small fiber) normal deviate score, mBMI modified body mass index, NIS-LL Neuropathy Impairment Score in the Lower Limbs, TQOL total quality of life
Fig. 3
Fig. 3
Efficacy of tafamidis in slowing disease progression in 33 patients from study Fx-006 previously given placebo in study Fx-005, as measured by the mean rate of change per month for each efficacy measure in the placebo−tafamidis ITT population. a NIS-LL. b Σ7 NTs nds score. c Σ3 NTSF nds. d Norfolk TQOL. e mBMI. For comparison, rate of disease progression in 64 patients treated with tafamidis in study Fx-005 is also displayed for each endpoint. Σ7 NTs nds summated 7 nerve tests normal deviate score, Σ3 NTSF nds summated 3 nerve tests (small fiber) normal deviate score, mBMI modified body mass index, NIS-LL Neuropathy Impairment Score in the Lower Limbs, TQOL total quality of life
Fig. 4
Fig. 4
Effect of tafamidis on disease progression over 30 months as measured by the mean change from study Fx-005 baseline in efficacy measures in the ITT population. a NIS-LL. b NIS-LL muscle weakness subscale. c Σ7 NTs nds. d Σ3 NTSF nds. e TQOL. f mBMI. Σ7 NTs nds summated 7 nerve tests normal deviate score, Σ3 NTSF nds summated 3 nerve tests (small fiber) normal deviate score, mBMI modified body mass index, NIS-LL Neuropathy Impairment Score in the Lower Limbs, TQOL total quality of life
Fig. 5
Fig. 5
Early-start treatment effect (tafamidis–tafamidis group) vs. late-start treatment effect (placebo–tafamidis group) as measured by the mean (±SEM) change from baseline at 30 months in efficacy measures in the ITT population. a NIS-LL and muscle weakness subscale. b Σ7 NTs nds and Σ3 NTSF nds scores. c TQOL. d mBMI. p-Values are based on Wilcoxon’s rank sum test. Σ7 NTs nds summated 7 nerve tests normal deviate score, Σ3 NTSF nds summated 3 nerve tests (small fiber) normal deviate score, mBMI modified body mass index, NIS-LL Neuropathy Impairment Score in the Lower Limbs, TQOL total quality of life

References

    1. Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE. Tabulation of human transthyretin (TTR) variants. Amyloid. 2003;10(3):160–184. doi: 10.3109/13506120308998998.
    1. Ando Y, Nakamura M, Araki S. Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol. 2005;62(7):1057–1062. doi: 10.1001/archneur.62.7.1057.
    1. Blake CC, Geisow MJ, Swan ID, Rerat C, Rerat B. Structure of human plasma prealbumin at 2–5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J Mol Biol. 1974;88(1):1–12. doi: 10.1016/0022-2836(74)90291-5.
    1. Monaco HL, Rizzi M, Coda A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science. 1995;268(5213):1039–1041. doi: 10.1126/science.7754382.
    1. Hammarström P, Jiang X, Hurshman AR, Powers ET, Kelly JW. Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci USA. 2002;99(Suppl 4):16427–16432. doi: 10.1073/pnas.202495199.
    1. Koike H, Misu K, Sugiura M, Iijima M, Mori K, Yamamoto M, Hattori N, Mukai E, Ando Y, Ikeda S, Sobue G. Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology. 2004;63(1):129–138. doi: 10.1212/01.WNL.0000132966.36437.12.
    1. Andersson R. Familial amyloidosis with polyneuropathy. A clinical study based on patients living in northern Sweden. Acta Med Scand Suppl. 1976;590:1–64.
    1. Coutinho P, Martins da Silva A, Lopes Lima J, Resende Barbosa A (1980) Forty years of experience with type I amyloid neuropathy: review of 483 cases. In: Glenner GG, Pinho e Costa P, Falcao de Freitas A (eds) Amyloid and amyloidosis. Excerpta Medica, Amsterdam, pp 88−98
    1. Planté-Bordeneuve V, Lalu T, Misrahi M, Reilly MM, Adams D, Lacroix C, Said G. Genotypic-phenotypic variations in a series of 65 patients with familial amyloid polyneuropathy. Neurology. 1998;51(3):708–714. doi: 10.1212/WNL.51.3.708.
    1. Sekijima Y, Kelly JW, Ikeda S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des. 2008;14(30):3219–3230. doi: 10.2174/138161208786404155.
    1. Holmgren G, Ericzon BG, Groth CG, Steen L, Suhr O, Andersen O, Wallin BG, Seymour A, Richardson S, Hawkins PN, et al. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet. 1993;341(8853):1113–1116. doi: 10.1016/0140-6736(93)93127-M.
    1. Bergethon PR, Sabin TD, Lewis D, Simms RW, Cohen AS, Skinner M. Improvement in the polyneuropathy associated with familial amyloid polyneuropathy after liver transplantation. Neurology. 1996;47(4):944–951. doi: 10.1212/WNL.47.4.944.
    1. Herlenius G, Wilczek HE, Larsson M, Ericzon BG. Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: results from the Familial Amyloidotic Polyneuropathy World Transplant Registry. Transplantation. 2004;77(1):64–71. doi: 10.1097/01.TP.0000092307.98347.CB.
    1. Takei Y, Ikeda S, Ikegami T, Hashikura Y, Miyagawa S, Ando Y. Ten years of experience with liver transplantation for familial amyloid polyneuropathy in Japan: outcomes of living donor liver transplantations. Intern Med. 2005;44(11):1151–1156. doi: 10.2169/internalmedicine.44.1151.
    1. Okamoto S, Wixner J, Obayashi K, Ando Y, Ericzon BG, Friman S, Uchino M, Suhr OB. Liver transplantation for familial amyloidotic polyneuropathy: impact on Swedish patients’ survival. Liver Transpl. 2009;15(10):1229–1235. doi: 10.1002/lt.21817.
    1. Winkler M, Brinkmann C, Jost U, Oldhafer K, Ringe B, Pichlmayr R. Long-term side effects of cyclosporine-based immunosuppression in patients after liver transplantation. Transpl Proc. 1994;26(5):2679–2682.
    1. Stangou AJ, Hawkins PN, Heaton ND, Rela M, Monaghan M, Nihoyannopoulos P, O’Grady J, Pepys MB, Williams R. Progressive cardiac amyloidosis following liver transplantation for familial amyloid polyneuropathy: implications for amyloid fibrillogenesis. Transplantation. 1998;66(2):229–233. doi: 10.1097/00007890-199807270-00016.
    1. Hörnsten R, Wiklund U, Olofsson BO, Jensen SM, Suhr OB. Liver transplantation does not prevent the development of life-threatening arrhythmia in familial amyloidotic polyneuropathy, Portuguese-type (ATTR Val30Met) patients. Transplantation. 2004;78(1):112–116. doi: 10.1097/01.TP.0000133517.20972.27.
    1. Liepnieks JJ, Benson MD. Progression of cardiac amyloid deposition in hereditary transthyretin amyloidosis patients after liver transplantation. Amyloid. 2007;14(4):277–282. doi: 10.1080/13506120701614032.
    1. Yazaki M, Mitsuhashi S, Tokuda T, Kametani F, Takei YI, Koyama J, Kawamorita A, Kanno H, Ikeda SI. Progressive wild-type transthyretin deposition after liver transplantation preferentially occurs onto myocardium in FAP patients. Am J Transpl. 2007;7(1):235–242. doi: 10.1111/j.1600-6143.2006.01585.x.
    1. Said G, Planté-Bordeneuve V. Familial amyloid polyneuropathy: a clinico-pathologic study. J Neurol Sci. 2009;284(1–2):149–154. doi: 10.1016/j.jns.2009.05.001.
    1. Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc Chem Res. 2005;38(12):911–921. doi: 10.1021/ar020073i.
    1. Razavi H, Palaninathan SK, Powers ET, Wiseman RL, Purkey HE, Mohamedmohaideen NN, Deechongkit S, Chiang KP, Dendle MT, Sacchettini JC, Kelly JW. Benzoxazoles as transthyretin amyloid fibril inhibitors: synthesis, evaluation, and mechanism of action. Angew Chem Int Ed Engl. 2003;42(24):2758–2761. doi: 10.1002/anie.200351179.
    1. Bulawa CE, Connelly S, DeVit M, Wang L, Weigel C, Fleming JA, Packman J, Powers ET, Wiseman RL, Foss TR, Wilson IA, Kelly JW, Labaudinière R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci USA. 2012;109(24):9629–9634. doi: 10.1073/pnas.1121005109.
    1. Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Planté-Bordeneuve V, Lozeron P, Suhr OB, Campistol JM, Conceição IM, Schmidt HH, Trigo P, Kelly JW, Labaudinière R, Chan J, Packman J, Wilson A, Grogan DR. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79(8):785–792. doi: 10.1212/WNL.0b013e3182661eb1.
    1. Dyck PJ, Davies JL, Litchy WJ, O’Brien PC. Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology. 1997;49(1):229–239. doi: 10.1212/WNL.49.1.229.
    1. Vinik EJ, Hayes RP, Oglesby A, Bastyr E, Barlow P, Ford-Molvik SL, Vinik AI. The development and validation of the Norfolk QOL-DN, a new measure of patients’ perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol Ther. 2005;7(3):497–508. doi: 10.1089/dia.2005.7.497.
    1. Suhr O, Danielsson A, Holmgren G, Steen L. Malnutrition and gastrointestinal dysfunction as prognostic factors for survival in familial amyloidotic polyneuropathy. J Intern Med. 1994;235(5):479–485. doi: 10.1111/j.1365-2796.1994.tb01106.x.
    1. Wang L, Packman J, Labaudinière R, Bulawa C (2006) Novel immunoturbidimetric method to monitor transthyretin (TTR) stability in plasma. Amyloid J Protein Fold Disord 13:(abstract) 67
    1. D’Agostino RB. The delayed-start study design. N Engl J Med. 2009;361(13):1304–1306. doi: 10.1056/NEJMsm0904209.
    1. Parkinson Study Group (2004) A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 61(4):561–566
    1. Olanow CW, Hauser RA, Jankovic J, Langston W, Lang A, Poewe W, Tolosa E, Stocchi F, Melamed E, Eyal E, Rascol O. A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): rationale, design, and baseline characteristics. Mov Disord. 2008;23(15):2194–2201. doi: 10.1002/mds.22218.
    1. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, Langston W, Melamed E, Poewe W, Stocchi F, Tolosa E. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009;361(13):1268–1278. doi: 10.1056/NEJMoa0809335.
    1. Schneider JS, Gollomp SM, Sendek S, Colcher A, Cambi F, Du W. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci. 2013;324(1–2):140–148. doi: 10.1016/j.jns.2012.10.024.
    1. Coelho T, Carvalho M, Saraiva MJ, Alves I, Almeida MR, Costa PP. A strikingly benign evolution of FAP in an individual compound heterozygote for two TTR mutations: TTR Met30 and TTR Met119. J Rheumatol. 1993;20:179.
    1. Hammarström P, Wiseman RL, Powers ET, Kelly JW. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science. 2003;299(5607):713–716. doi: 10.1126/science.1079589.
    1. Suhr OB, Holmgren G, Steen L, Wikström L, Norden G, Friman S, Duraj FF, Groth CG, Ericzon BG. Liver transplantation in familial amyloidotic polyneuropathy. Follow-up of the first 20 Swedish patients. Transplantation. 1995;60(9):933–938. doi: 10.1097/00007890-199511150-00009.

Source: PubMed

3
Abonnere