Combining plasma phospho-tau and accessible measures to evaluate progression to Alzheimer's dementia in mild cognitive impairment patients

Alexa Pichet Binette, Sebastian Palmqvist, Divya Bali, Gill Farrar, Christopher J Buckley, David A Wolk, Henrik Zetterberg, Kaj Blennow, Shorena Janelidze, Oskar Hansson, Alexa Pichet Binette, Sebastian Palmqvist, Divya Bali, Gill Farrar, Christopher J Buckley, David A Wolk, Henrik Zetterberg, Kaj Blennow, Shorena Janelidze, Oskar Hansson

Abstract

Background: Up to now, there are no clinically available minimally invasive biomarkers to accurately identify mild cognitive impairment (MCI) patients who are at greater risk to progress to Alzheimer's disease (AD) dementia. The recent advent of blood-based markers opens the door for more accessible biomarkers. We aimed to identify which combinations of AD related plasma biomarkers and other easily accessible assessments best predict progression to AD dementia in patients with mild cognitive impairment (MCI).

Methods: We included patients with amnestic MCI (n = 110) followed prospectively over 3 years to assess clinical status. Baseline plasma biomarkers (amyloid-β 42/40, phosphorylated tau217 [p-tau217], neurofilament light and glial fibrillary acidic protein), hippocampal volume, APOE genotype, and cognitive tests were available. Logistic regressions with conversion to amyloid-positive AD dementia within 3 years as outcome was used to evaluate the performance of different biomarkers measured at baseline, used alone or in combination. The first analyses included only the plasma biomarkers to determine the ones most related to AD dementia conversion. Second, hippocampal volume, APOE genotype and a brief cognitive composite score (mPACC) were combined with the best plasma biomarker.

Results: Of all plasma biomarker combinations, p-tau217 alone had the best performance for discriminating progression to AD dementia vs all other combinations (AUC 0.84, 95% CI 0.75-0.93). Next, combining p-tau217 with hippocampal volume, cognition, and APOE genotype provided the best discrimination between MCI progressors vs. non-progressors (AUC 0.89, 0.82-0.95). Across the few best models combining different markers, p-tau217 and cognition were consistently the main contributors. The most parsimonious model including p-tau217 and cognition had a similar model fit, but a slightly lower AUC (0.87, 0.79-0.95, p = 0.07).

Conclusion: We identified that combining plasma p-tau217 and a brief cognitive composite score was strongly related to greater risk of progression to AD dementia in MCI patients, suggesting that these measures could be key components of future prognostic algorithms for early AD.

Trial registration: NCT01028053 , registered December 9, 2009.

Keywords: Alzheimer’s disease; Dementia; Mild cognitive impairment; Plasma biomarkers; p-tau.

Conflict of interest statement

Henrik Zetterberg has served at scientific advisory boards and/or as a consultant for Abbvie, Alector, Eisai, Denali, Roche, Wave, Samumed, Siemens Healthineers, Pinteon Therapeutics, Nervgen, AZTherapies, CogRx, and Red Abbey Labs, has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure and Biogen, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. Oskar Hansson has acquired research support (for the institution) from AVID Radiopharmaceuticals, Biogen, Eli Lilly, Eisai, GE Healthcare, Pfizer, and Roche. In the past 2 years, he has received consultancy/speaker fees from AC Immune, Alzpath, Biogen, Cerveau and Roche. Sebastian Palmqvist has served on scientific advisory boards and/or given lectures in symposia sponsored by F. Hoffmann-La Roche, Biogen, and Geras Solutions. Kaj Blennow has served as a consultant, at advisory boards, or at data monitoring committees for Abcam, Axon, Biogen, JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Prothena, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. Gill Farrar and Christopher Buckley are full time employees of GE Healthcare who sponsored the Wolk et al (2018) study from which these plasma samples were derived. Dr. Wolk has received research support (for the institution) for Eli Lilly, Biogen, and Merck. He has also received consulting fees from GE Healthcare and Neuronix and Honoria for DSMB participation from Functional Neuromodulation.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Comparisons of plasma biomarkers between MCI who progressed to AD dementia and those who did not. Levels of plasma p-tau217 (A), NfL (B), Aβ42/Aβ40 ratio (C), and GFAP (D) between MCI patients who did not progress to AD dementia (non-progressors) vs. those who progressed to AD dementia (progressors) within 3 years. Boxes represent the first and third quartile of each distribution, and whiskers extend up to 1.5-times the interquartile range. Corresponding p-value and Cohen’s d effect size are reported on the top of each panel. Aβ, beta-amyloid; GFAP, glial fibrillary acidic protein; NfL, neurofilament light; MCI, mild cognitive impairment; p-tau217, phosphorylated tau 217
Fig. 2
Fig. 2
Receiver operating characteristic curves from different combinations of markers related to conversion to AD dementia. Receiver operating characteristic curves from logistic regression models discriminating MCI patients who progressed to AD dementia within 3 years (n = 23) vs. those who did not (n = 77) in the subsample with plasma p-tau217 and all other AD markers of interest (global cognition from mPACC, hippocampal volume and APOE4 status). All details of the different models are reported in Table 3. APOE, apolipoprotein E genotype (carrying at least one ε4 allele); AUC, area under the curve; hipp, hippocampal volume (adjusted for total intracranial volume); mPACC, modified Preclinical Alzheimer’s Cognitive Composite; p-tau217, phosphorylated tau 217

References

    1. Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging I, et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nat Med. 2021.
    1. Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(3):126–135. doi: 10.1212/WNL.0000000000004826.
    1. Roberts R, Knopman DS. Classification and epidemiology of MCI. Clin Geriatr Med. 2013;29(4):753–772. doi: 10.1016/j.cger.2013.07.003.
    1. Eckerstrom C, Olsson E, Klasson N, Berge J, Nordlund A, Bjerke M, et al. Multimodal prediction of dementia with up to 10 years follow up: the Gothenburg MCI study. J Alzheimers Dis. 2015;44(1):205–214. doi: 10.3233/JAD-141053.
    1. Santangelo R, Masserini F, Agosta F, Sala A, Caminiti SP, Cecchetti G, et al. CSF p-tau/Abeta42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to AD. Eur J Nucl Med Mol Imaging. 2020;47(13):3152–3164. doi: 10.1007/s00259-020-04853-4.
    1. Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021.
    1. Wolk DA, Sadowsky C, Safirstein B, Rinne JO, Duara R, Perry R, et al. Use of flutemetamol F 18-labeled positron emission tomography and other biomarkers to assess risk of clinical progression in patients with amnestic mild cognitive impairment. JAMA Neurol. 2018;75(9):1114–1123. doi: 10.1001/jamaneurol.2018.0894.
    1. Blennow K. Phenotyping Alzheimer’s disease with blood tests. Science. 2021;373(6555):626–628. doi: 10.1126/science.abi5208.
    1. Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol. 2005;62(7):1160–1163. doi: 10.1001/archneur.62.7.1160.
    1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–944. doi: 10.1212/WNL.34.7.939.
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–269. doi: 10.1016/j.jalz.2011.03.005.
    1. Janelidze S, Palmqvist S, Leuzy A, Stomrud E, Verberk IMW, Zetterberg H, et al. Detecting amyloid positivity in early Alzheimer’s disease using combinations of plasma Abeta42/Abeta40 and p-tau. Alzheimers Dement. 2021.
    1. Gisslen M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, et al. Plasma Concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine. 2016;3:135–140. doi: 10.1016/j.ebiom.2015.11.036.
    1. Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019;76(7):791–799. doi: 10.1001/jamaneurol.2019.0765.
    1. Papp KV, Rentz DM, Orlovsky I, Sperling RA, Mormino EC. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: The PACC5. Alzheimers Dement (N Y) 2017;3(4):668–677. doi: 10.1016/j.trci.2017.10.004.
    1. Insel PS, Weiner M, Mackin RS, Mormino E, Lim YY, Stomrud E, et al. Determining clinically meaningful decline in preclinical Alzheimer disease. Neurology. 2019;93(4):e322–ee33. doi: 10.1212/WNL.0000000000007831.
    1. Coupe P, Manjon JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage. 2011;54(2):940–954. doi: 10.1016/j.neuroimage.2010.09.018.
    1. Jack CR, Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–547. doi: 10.1212/WNL.0000000000002923.
    1. Hampel H, Cummings J, Blennow K, Gao P, Jack CR Jr, Vergallo A. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol. 2021.
    1. Bellaver B, Ferrari-Souza JP, Uglione da Ros L, Carter SF, Rodriguez-Vieitez E, Nordberg A, et al. Astrocyte biomarkers in Alzheimer disease: a systematic review and meta-analysis. Neurology. 2021.
    1. Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021.
    1. Cullen NC, Leuzy A, Palmqvist S, Janelidze S, Stomrud E, Pesini P, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nature Aging. 2021;1(1):114–123. doi: 10.1038/s43587-020-00003-5.
    1. Mattsson-Carlgren N, Janelidze S, Palmqvist S, Cullen N, Svenningsson AL, Strandberg O, et al. Longitudinal plasma p-tau217 is increased in early stages of Alzheimer’s disease. Brain. 2020;143(11):3234–3241. doi: 10.1093/brain/awaa286.
    1. Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow K, Hansson O. Cerebrospinal fluid levels of beta-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry. 2012;69(1):98–106. doi: 10.1001/archgenpsychiatry.2011.155.
    1. Boerwinkle AH, Wisch JK, Chen CD, Gordon BA, Butt OH, Schindler SE, et al. Temporal correlation of CSF and neuroimaging in the amyloid-tau-neurodegeneration model of Alzheimer disease. Neurology. 2021.
    1. Palmqvist S, Insel PS, Stomrud E, Janelidze S, Zetterberg H, Brix B, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med. 2019;11(12):e11170. doi: 10.15252/emmm.201911170.
    1. Mattsson-Carlgren N, Janelidze S, Bateman RJ, Smith R, Stomrud E, Serrano GE, et al. Soluble P-tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Mol Med. 2021:e14022.
    1. Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA. 2020.
    1. Pereira JB, Janelidze S, Smith R, Mattsson-Carlgren N, Palmqvist S, Teunissen CE, et al. Plasma GFAP is an early marker of amyloid-beta but not tau pathology in Alzheimer’s disease. Brain. 2021.
    1. Verberk IMW, Thijssen E, Koelewijn J, Mauroo K, Vanbrabant J, de Wilde A, et al. Combination of plasma amyloid beta(1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. Alzheimers Res Ther. 2020;12(1):118. doi: 10.1186/s13195-020-00682-7.
    1. Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Asih PR, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry. 2021;11(1):27. doi: 10.1038/s41398-020-01137-1.
    1. Cicognola C, Janelidze S, Hertze J, Zetterberg H, Blennow K, Mattsson-Carlgren N, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res Ther. 2021;13(1):68. doi: 10.1186/s13195-021-00804-9.
    1. Frolich L, Peters O, Lewczuk P, Gruber O, Teipel SJ, Gertz HJ, et al. Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer’s dementia. Alzheimers Res Ther. 2017;9(1):84. doi: 10.1186/s13195-017-0301-7.
    1. Blazhenets G, Ma Y, Sorensen A, Schiller F, Rucker G, Eidelberg D, et al. Predictive value of (18)F-florbetapir and (18)F-FDG PET for conversion from mild cognitive impairment to Alzheimer dementia. J Nucl Med. 2020;61(4):597–603. doi: 10.2967/jnumed.119.230797.
    1. van Maurik IS, Vos SJ, Bos I, Bouwman FH, Teunissen CE, Scheltens P, et al. Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol. 2019;18(11):1034–1044. doi: 10.1016/S1474-4422(19)30283-2.
    1. Janelidze S, Teunissen CE, Zetterberg H, Allue JA, Sarasa L, Eichenlaub U, et al. Head-to-head comparison of 8 plasma amyloid-beta 42/40 assays in Alzheimer disease. JAMA Neurol. 2021;78(11):1375–1382. doi: 10.1001/jamaneurol.2021.3180.
    1. Janelidze S, Stomrud E, Smith R, Palmqvist S, Mattsson N, Airey DC, et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat Commun. 2020;11(1):1683. doi: 10.1038/s41467-020-15436-0.

Source: PubMed

3
Abonnere