Simultaneous retrograde intrarenal surgery for ipsilateral asymptomatic renal stones in patients with ureteroscopic symptomatic ureteral stone removal

Dehui Lai, Meiling Chen, Yongzhong He, Xun Li, Dehui Lai, Meiling Chen, Yongzhong He, Xun Li

Abstract

Background: Ipsilateral asymptomatic renal stone associated with symptomatic ureteral stone is not a rare event, and the recommended treatment policy was not declared clearly. This study was conducted to compare the outcomes of simultaneous retrograde intrarenal surgery (RIRS) and ureteroscopy to ureteroscopy alone for this clinical event.

Methods: 415 patients with symptomatic ureteral stone and ipsilateral asymptomatic renal stones were reviewed to obtain two match groups, who were treating with simultaneous modality (group A, N = 72), or ureteroscopy alone (group B, N = 72). Matching criteria were ureteral and renal stone side, duration and location, the presence of pre-stented. Perioperative and postoperative characteristics were compared between the two groups.

Results: Mean stone burdens were similar between group A and B. Mean operative duration for group A and B were 72.4 ± 21.3 and 36.4 ± 10.2 min, respectively (P < 0.001). Mean hospital duration was 6.4 ± 2.9 and 5.3 ± 2.1 days in group A and B, respectively (P = 0.521). Ureteral SFR was 100% in each group. Renal SFR for RIRS was 86.1%. Complication rates in group A were higher (22.2% vs 13.9%), but the differences were not statistically significant (P = 0.358). In group A, complications were significantly less in pre-stented patients (3/25 vs 5/11, P = 0.04). Auxiliary treatment rate was significant higher in group B (69.4% vs 5.6%, P < 0.001) during follow-up (mean >18 months).

Conclusions: Simultaneous RIRS for ipsilateral asymptomatic renal stones in patients with ureteroscopic symptomatic ureteral stone removal can be performed safely and effectively. It promises a high SFR with lower auxiliary treatment rate, and does not lengthen hospital duration and increase complications.

References

    1. Keeley FX, Jr, Tilling K, Elves A, Menezes P, Wills M, Rao N, et al. Preliminary results of a randomized controlled trial of prophylactic shock wave lithotripsy for small asymptomatic renal calyceal stones. BJU Int. 2001;87(1):1–8. doi: 10.1046/j.1464-410x.2001.00781.x.
    1. Turk C, Knoll T, Petrik A, Sarica K, Straub M, Seitz C. Guidelines on urolithiasis. 2012. pp. 1–102.
    1. Koh LT, Ng FC, Ng KK. Outcomes of long-term follow-up of patients with conservative management of asymptomatic renal calculi. BJU Int. 2012;109(4):622–5. doi: 10.1111/j.1464-410X.2011.10329.x.
    1. Sabnis RB, Jagtap J, Mishra S, Desai M. Treating renal calculi 1-2 cm in diameter with minipercutaneous or retrograde intrarenal surgery: a prospective comparative study. BJU Int. 2012;110(8 Pt B):E346–9. doi: 10.1111/j.1464-410X.2012.11089.x.
    1. Sabnis RB, Ganesamoni R, Doshi A, Ganpule AP, Jagtap J, Desai MR. Micropercutaneous nephrolithotomy (microperc) vs retrograde intrarenal surgery for the management of small renal calculi: a randomized controlled trial. BJU Int. 2013;112(3):355–61. doi: 10.1111/bju.12164.
    1. Resorlu B, Unsal A, Ziypak T, Diri A, Atis G, Guven S, et al. Comparison of retrograde intrarenal surgery, shockwave lithotripsy, and percutaneous nephrolithotomy for treatment of medium-sized radiolucent renal stones. World J Urol. 2013;31(6):1581–6. doi: 10.1007/s00345-012-0991-1.
    1. Ozturk U, Sener NC, Goktug HN, Nalbant I, Gucuk A, Imamoglu MA. Comparison of percutaneous nephrolithotomy, shock wave lithotripsy, and retrograde intrarenal surgery for lower pole renal calculi 10-20 mm. Urol Int. 2013;91(3):345–9. doi: 10.1159/000351136.
    1. Ho CC, Hafidzul J, Praveen S, Goh EH, Bong JJ, Lee BC, et al. Retrograde intrarenal surgery for renal stones smaller than 2 cm. Singapore Med J. 2010;51(6):512–5.
    1. Srisubat A, Potisat S, Lojanapiwat B, Setthawong V, Laopaiboon M. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev. 2009;7(4):CD007044.
    1. Kanao K, Nakashima J, Nakagawa K, Asakura H, Miyajima A, Oya M, et al. Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol. 2006;176(4 Pt 1):1453–6. doi: 10.1016/j.juro.2006.06.089.
    1. Abdel-Khalek M, Sheir KZ, Mokhtar AA, Eraky I, Kenawy M, Bazeed M. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones--amultivariate analysis model. Scand J Urol Nephrol. 2004;38(2):161–7. doi: 10.1080/00365590310022626.
    1. Galvin DJ, Pearle MS. The contemporary management of renal and ureteric calculi. BJU Int. 2006;98(6):1283–8. doi: 10.1111/j.1464-410X.2006.06514.x.
    1. Sarkissian C, Noble M, Li J, Monga M. Patient decision making for asymptomatic renal calculi: balancing benefit and risk. Urology. 2013;81(2):236–40. doi: 10.1016/j.urology.2012.10.032.
    1. Goldberg H, Holland R, Tal R, Lask DM, Livne PM, Lifshitz DA. The impact ofretrograde intrarenal surgery for asymptomatic renal stones in patients undergoing ureteroscopy for a symptomatic ureteral stone. J Endourol. 2013;27(8):970–3. doi: 10.1089/end.2013.0055.
    1. Grasso M, Ficazzola M. Retrograde ureteropyeloscopy for lower pole caliceal calculi. J Urol. 1999;162(6):1904–8. doi: 10.1016/S0022-5347(05)68065-2.
    1. Resorlu B, Oguz U, Resorlu EB, Oztuna D, Unsal A. The impact of pelvicaliceal anatomy on the success of retrograde intrarenal surgery in patients with lower pole renal stones. Urology. 2012;79(1):61–6. doi: 10.1016/j.urology.2011.06.031.
    1. Riley JM, Stearman L, Troxel S. Retrograde ureteroscopy for renal stones larger than 2.5 cm. J Endourol. 2009;23(9):1395–8. doi: 10.1089/end.2009.0391.
    1. Streem SB, Yost A, Mascha E. Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lithotripsy. J Urol. 1996;155:1186. doi: 10.1016/S0022-5347(01)66208-6.
    1. Glowacki LS, Beecroft ML, Cook RJ, Pahl D, Churchill DN. The natural history of asymptomatic urolithiasis. J Urol. 1992;147(2):319–21.
    1. Stern JM, Yiee J, Park S. Safety and efficacy of ureteral access sheaths. J Endourol. 2007;21(2):119–23. doi: 10.1089/end.2007.9997.
    1. Lallas CD, Auge BK, Raj GV, Santa-Cruz R, Madden JF, Preminger GM. Laser Doppler flowmetric determination of ureteral blood flow after ureteral access sheath placement. J Endourol. 2002;16(8):583–90. doi: 10.1089/089277902320913288.
    1. Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol. 2013;189(2):580–4. doi: 10.1016/j.juro.2012.08.197.
    1. Monga M, Best S, Venkatesh R, Ames C, Lee C, Kuskowski M, et al. Durability of flexible ureteroscopes: a randomized, prospective study. J Urol. 2006;176(1):137–41. doi: 10.1016/S0022-5347(06)00575-1.
    1. Lee SH, Kim TH, Myung SC, Moon YT, Kim KD, Kim JH, et al. Effectiveness of flexible ureteroscopic stone removal for treating ureteral and ipsilateral renal stones: a single-center experience. Korean J Urol. 2013;54(6):377–82. doi: 10.4111/kju.2013.54.6.377.
    1. Binbay M, Yuruk E, Akman T, Ozgor F, Seyrek M, Ozkuvanci U, et al. Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol. 2010;24(12):1929–34. doi: 10.1089/end.2010.0211.
    1. Multescu R, Geavlete B, Georgescu D, Geavlete P. Conventional fiberoptic flexible ureteroscope versus fourth generation digital flexible ureteroscope: a critical comparison. J Endourol. 2010;24(1):17–21. doi: 10.1089/end.2009.0390.
    1. Karaolides T, Bach C, Kachrilas S, Goyal A, Masood J, Buchholz N. Improving the durability of digital flexible ureteroscopes. Urology. 2013;81(4):717–22. doi: 10.1016/j.urology.2013.01.016.

Source: PubMed

3
Abonnere