Immersive Virtual Reality for Pediatric Pain

Andrea Stevenson Won, Jakki Bailey, Jeremy Bailenson, Christine Tataru, Isabel A Yoon, Brenda Golianu, Andrea Stevenson Won, Jakki Bailey, Jeremy Bailenson, Christine Tataru, Isabel A Yoon, Brenda Golianu

Abstract

Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice.

Keywords: Virtual reality; nonpharmacological; pediatric pain; procedural pain; rehabilitation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The child may move her head in pitch orientation, as in nodding her head, in yaw orientation, as in moving her head from side to side to look around the environment, or in roll orientation, as in touching her ear to her shoulder.
Figure 2
Figure 2
Virtual Reality (VR) coordinate system. In this picture, movement in the y-axis corresponds to moving up and down, movement in the x-axis corresponds to moving left and right, and movement in the z-axis corresponds to moving forward and backward. While global positional coordinates may vary according to set up, y is the up–down direction and the z-axis will often reflect movement towards the monitor of the desktop computer.

References

    1. Cummings J.J., Bailenson J.N. How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol. 2016;19:272–309. doi: 10.1080/15213269.2015.1015740.
    1. Hoffman H.G., Doctor J.N., Patterson D.R., Carrougher G.J., Furness T.A., III Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain. 2000;85:305–309. doi: 10.1016/S0304-3959(99)00275-4.
    1. Human Photonics Laboratory. [(accessed on 7 March 2017)]; Available online: .
    1. Schmitt Y.S., Hoffman H.G., Blough D.K., Patterson D.R., Jensen M.P., Soltani M., Carrougher G.J., Nakamura D., Sharar S.R. A randomized, controlled trial of immersive virtual reality analgesia, during physical therapy for pediatric burns. Burns. 2011;37:61–68. doi: 10.1016/j.burns.2010.07.007.
    1. Jeffs D., Dorman D., Brown S., Files A., Graves T., Kirk E., Meredith-Neve S., Sanders J., White B., Swearingen C.J. Effect of virtual reality on adolescent pain during burn wound care. J. Burn Care Res. 2014;35:395–408. doi: 10.1097/BCR.0000000000000019.
    1. Brown N.J., Kimble R.M., Rodger S., Ware R.S., Cuttle L. Play and heal: Randomized controlled trial of Ditto™ intervention efficacy on improving re-epithelialization in pediatric burns. Burns. 2014;40:204–213. doi: 10.1016/j.burns.2013.11.024.
    1. Miller K., Rodger S., Bucolo S., Greer R., Kimble R.M. Multi-modal distraction. Using technology to combat pain in young children with burn injuries. Burns. 2010;36:647–658. doi: 10.1016/j.burns.2009.06.199.
    1. Pardesi O., Fuzaylov G. Pain management in pediatric burn patients: Review of recent literature and future directions. J. Burn Care Res. 2017 doi: 10.1097/BCR.0000000000000470.
    1. Hoffman H.G., Meyer W.J., III, Ramirez M., Roberts L., Seibel E.J., Atzori B., Sharar S.R., Patterson D.R. Feasibility of articulated arm mounted Oculus Rift Virtual Reality goggles for adjunctive pain control during occupational therapy in pediatric burn patients. Cyberpsychol. Behav. Soc. Netw. 2014;17:397–401. doi: 10.1089/cyber.2014.0058.
    1. Gold J.I., Kim S.H., Kant A.J., Joseph M.H., Rizzo A.S. Effectiveness of virtual reality for pediatric pain distraction during IV placement. CyberPsychol. Behav. 2006;9:207–212. doi: 10.1089/cpb.2006.9.207.
    1. Wong D.L., Baker C.M. Pain in children: comparison of assessment scales. Pediatr. Nurs. 1988;14:9–17.
    1. Nilsson S., Finnström B., Kokinsky E., Enskär K. The use of virtual reality for needle-related procedural pain and distress in children and adolescents in a paediatric oncology unit. Eur. J. Oncol. Nurs. 2009;13:102–109. doi: 10.1016/j.ejon.2009.01.003.
    1. He H.G., Zhu L., Chan S.W.C., Liam J.L.W., Li H.C.W., Ko S.S., Klainin-Yobas P., Wang W. Therapeutic play intervention on children’s perioperative anxiety, negative emotional manifestation and postoperative pain: A randomized controlled trial. J. Adv. Nurs. 2015;71:1032–1043. doi: 10.1111/jan.12608.
    1. Shahrbanian S., Ma X., Aghaei N., Korner-Bitensky N., Moshiri K., Simmonds M.J. Use of virtual reality (immersive vs. non immersive) for pain management in children and adults: A systematic review of evidence from randomized controlled trials. Eur. J. Exp. Biol. 2012;2:1408–1422.
    1. Ramachandran V.S., Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc. Biol. Sci. 1996;263:377–386. doi: 10.1098/rspb.1996.0058.
    1. McCabe C., Haigh R., Ring E., Halligan P., Wall P., Blake D. A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1) Rheumatology. 2003;42:97–101. doi: 10.1093/rheumatology/keg041.
    1. Sato K., Fukumori S., Matsusaki T., Maruo T., Ishikawa S., Nishie H., Takata K., Mizuhara H., Mizobuchi S., Nakatsuka H. Nonimmersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: An open-label pilot study. Pain Med. 2010;11:622–629. doi: 10.1111/j.1526-4637.2010.00819.x.
    1. Harvie D.S., Broecker M., Smith R.T., Meulders A., Madden V.J., Moseley G.L. Bogus visual feedback alters onset of movement-evoked pain in people with neck pain. Psychol. Sci. 2015;26:385–392. doi: 10.1177/0956797614563339.
    1. Chen K.B., Sesto M.E., Ponto K., Leonard J., Mason A., Vanderheiden G., Williams J., Radwin R.G. Use of virtual reality feedback for patients with chronic neck pain and kinesiophobia. IEEE Trans. Neural Syst. Rehabil. Eng. 2016 doi: 10.1109/TNSRE.2016.2621886.
    1. Won A.S., Tataru C.A., Cojocaru C.M., Krane E.J., Bailenson J.N., Niswonger S., Golianu B. Two virtual reality pilot studies for the treatment of pediatric CRPS. Pain Med. 2015;16:1644–1647. doi: 10.1111/pme.12755.
    1. Lebel A., Becerra L., Wallin D., Moulton E., Morris S., Pendse G., Jasciewicz J., Stein M., Aiello-Lammens M., Grant E. fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain. 2008;131:1854–1879. doi: 10.1093/brain/awn123.
    1. Becerra L., Sava S., Simons L.E., Drosos A.M., Sethna N., Berde C., Lebel A.A., Borsook D. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome. NeuroImage Clin. 2014;6:347–369. doi: 10.1016/j.nicl.2014.07.012.
    1. Simons L., Pielech M., Erpelding N., Linnman C., Moulton E., Sava S., Lebel A., Serrano P., Sethna N., Berde C. The responsive amygdala: Treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome. Pain. 2014;155:1727–1742. doi: 10.1016/j.pain.2014.05.023.
    1. Makin T.R., Scholz J., Henderson Slater D., Johansen-Berg H., Tracey I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain. 2015;138:2140–2146. doi: 10.1093/brain/awv161.
    1. Walz A.D., Usichenko T., Moseley G.L., Lotze M. Graded motor imagery and the impact on pain processing in a case of CRPS. Clin. J. Pain. 2013;29:276–279. doi: 10.1097/AJP.0b013e318250f4e8.
    1. Wang M., Reid D. Virtual reality in pediatric neurorehabilitation: Attention deficit hyperactivity disorder, autism and cerebral palsy. Neuroepidemiology. 2011;36:2–18. doi: 10.1159/000320847.
    1. Weiss P.L., Tirosh E., Fehlings D. Role of virtual reality for cerebral palsy management. J. Child Neurol. 2014;29:1119–1124. doi: 10.1177/0883073814533007.
    1. Biffi E., Beretta E., Cesareo A., Maghini C., Turconi A.C., Reni G., Strazzer S. An immersive virtual reality platform to enhance walking ability of children with acquired brain injuries. Methods Inf. Med. 2017;56:119–126. doi: 10.3414/ME16-02-0020.
    1. Meyns P., Pans L., Plasmans K., Heyrman L., Desloovere K., Molenaers G. The Effect of additional virtual reality training on balance in children with cerebral palsy after lower limb surgery: A feasibility study. Games Health J. 2017;6:39–48. doi: 10.1089/g4h.2016.0069.
    1. Trost Z., Zielke M., Guck A., Nowlin L., Zakhidov D., France C.R., Keefe F. The promise and challenge of virtual gaming technologies for chronic pain: The case of graded exposure for low back pain. Pain Manag. 2015;5:197–206. doi: 10.2217/pmt.15.6.
    1. Collado-Mateo D., Dominguez-Muñoz F.J., Adsuar J.C., Merellano-Navarro E., Gusi N. Exergames for women with fibromyalgia: A randomised controlled trial to evaluate the effects on mobility skills, balance and fear of falling. PeerJ. 2017;5:e3211. doi: 10.7717/peerj.3211.
    1. Senkowski D., Heinz A. Chronic pain and distorted body image: Implications for multisensory feedback interventions. Neurosci. Biobehav. Rev. 2016;69:252–259. doi: 10.1016/j.neubiorev.2016.08.009.
    1. Simons L.E., Kaczynski K.J. The Fear Avoidance model of chronic pain: Examination for pediatric application. J. Pain. 2012;13:827–835. doi: 10.1016/j.jpain.2012.05.002.
    1. Pekyavas N.O., Ergun N. Comparison of virtual reality exergaming and home exercise programs in patients with subacromial impingement syndrome and scapular dyskinesis: Short term effect. Acta Orthop. Traumatol. Turc. 2017 doi: 10.1016/j.aott.2017.03.008. in press.
    1. Odell S., Logan D.E. Pediatric pain management: The multidisciplinary approach. J. Pain Res. 2013;6:785–790. doi: 10.2147/JPR.S37434.
    1. Shiri S., Feintuch U., Weiss N., Pustilnik A., Geffen T., Kay B., Meiner Z., Berger I. A virtual reality system combined with biofeedback for treating pediatric chronic headache—A pilot study. Pain Med. 2013;14:621–627. doi: 10.1111/pme.12083.
    1. Soltani M., Teeley A.M., Wiechman S.A., JENSEN M.P., SHARAR S.R., Patterson D.R. Virtual reality hypnosis for pain control in a patient with gluteal hidradenitis: A case report. Contemp. Hypn. Integr. Ther. 2011;28:142–147.
    1. Lombard M., Ditton T. At the heart of it all: The concept of presence. J. Comput. Med. Commun. 1997;3 doi: 10.1111/j.1083-6101.1997.tb00072.x.
    1. Wiederhold B.K., Jang D., Kaneda M., Cabral I., Lurie Y., May T., Kim I., Wiederhold M.D., Kim S. An investigation into physiological responses in virtual environments: an objective measurement of presence. In: Riva G., Galimberti C., editors. Towards Cyberpsychology: Mind, Cognitions and Society in the Internet Age. IOS Press; Amsterdam: 2001. pp. 176–182.
    1. Sanchez-Vives M.V., Slater M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 2005;6:332–339. doi: 10.1038/nrn1651.
    1. Dahlquist L.M., Weiss K.E., Clendaniel L.D., Law E.F., Ackerman C.S., McKenna K.D. Effects of videogame distraction using a virtual reality type head-mounted display helmet on cold pressor pain in children. J. Pediatr. Psychol. 2009;34:574–584. doi: 10.1093/jpepsy/jsn023.
    1. Law E.F., Dahlquist L.M., Sil S., Weiss K.E., Herbert L.J., Wohlheiter K., Horn S.B. Videogame distraction using virtual reality technology for children experiencing cold pressor pain: The role of cognitive processing. J. Pediatr. Psychol. 2011;36:84–94. doi: 10.1093/jpepsy/jsq063.
    1. Sharar S.R., Carrougher G.J., Nakamura D., Hoffman H.G., Blough D.K., Patterson D.R. Factors influencing the efficacy of virtual reality distraction analgesia during postburn physical therapy: Preliminary results from 3 ongoing studies. Arch. Phys. Med. Rehabil. 2007;88:S43–S49. doi: 10.1016/j.apmr.2007.09.004.
    1. Baumgartner T., Speck D., Wettstein D., Masnari O., Beeli G., Jäncke L. Feeling present in arousing virtual reality worlds: Prefrontal brain regions differentially orchestrate presence experience in adults and children. Front. Hum. Neurosci. 2008;2:8. doi: 10.3389/neuro.09.008.2008.
    1. Flavell J.H., Flavell E.R., Green F.L., Korfmacher J.E. Do young children think of television images as pictures or real objects? J. Broadcast. Electron. Media. 1990;34:399–419. doi: 10.1080/08838159009386752.
    1. Richert R.A., Robb M.B., Smith E.I. Media as social partners: The social nature of young children’s learning from screen media. Child Dev. 2011;82:82–95. doi: 10.1111/j.1467-8624.2010.01542.x.
    1. Dahlquist L.M., McKenna K.D., Jones K.K., Dillinger L., Weiss K.E., Ackerman C.S. Active and passive distraction using a head-mounted display helmet: Effects on cold pressor pain in children. Health Psychol. 2007;26:794–801. doi: 10.1037/0278-6133.26.6.794.
    1. Bryanton C., Bosse J., Brien M., Mclean J., McCormick A., Sveistrup H. Feasibility, motivation, and selective motor control: Virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol. Behav. 2006;9:123–128. doi: 10.1089/cpb.2006.9.123.
    1. Olson C.K. Children’s motivations for video game play in the context of normal development. Rev. Gener. Psychol. 2010;14:180. doi: 10.1037/a0018984.
    1. Blakemore S.-J., Mills K.L. Is adolescence a sensitive period for sociocultural processing? Annu. Rev. Psychol. 2014;65:187–207. doi: 10.1146/annurev-psych-010213-115202.
    1. Claxton L.J., Ponto K.C. Understanding the properties of interactive televised characters. J. Appl. Dev. Psychol. 2013;34:57–62. doi: 10.1016/j.appdev.2012.11.007.
    1. Forgeron P.A., King S., Stinson J.N., McGrath P.J., MacDonald A.J., Chambers C.T. Social functioning and peer relationships in children and adolescents with chronic pain: A systematic review. Pain Res. Manag. 2010;15:27–41. doi: 10.1155/2010/820407.
    1. Beals L., Bers M.U. A developmental lens for designing virtual worlds for children and youth. Int. J. Learn. Media. 2009:51–65. doi: 10.1162/ijlm.2009.0001.
    1. Ni L.T., Fehlings D., Biddiss E. Design and evaluation of virtual reality-based therapy games with dual focus on therapeutic relevance and user experience for children with cerebral palsy. Games Health J. 2014;3:162–171. doi: 10.1089/g4h.2014.0003.
    1. Schneider S.M., Workman M. Effects of virtual reality on symptom distress in children receiving chemotherapy. CyberPsychol. Behav. 1999;2:125–134. doi: 10.1089/cpb.1999.2.125.
    1. Li H.C.W., Lopez V., Lee T.L.I. Effects of preoperative therapeutic play on outcomes of school-age children undergoing day surgery. Res. Nurs. Health. 2007;30:320–332.
    1. Fox J., Bailenson J.N., Tricase L. The embodiment of sexualized virtual selves: The Proteus effect and experiences of self-objectification via avatars. Comput. Hum. Behav. 2013;29:930–938. doi: 10.1016/j.chb.2012.12.027.
    1. Yee N., Bailenson J. The Proteus effect: The effect of transformed self-representation on behavior. Hum. Commun. Res. 2007;33:271–290. doi: 10.1111/j.1468-2958.2007.00299.x.
    1. Jäncke L., Cheetham M., Baumgartner T. Virtual reality and the role of the prefrontal cortex in adults and children. Front. Neurosci. 2009;3:6. doi: 10.3389/neuro.01.006.2009.
    1. Bailey J.O., Bailenson J.N., Obradović J., Aguiar N.R. The influence of Immersive virtual reality on children’s inhibitory control and social behavior; Presented at the International Communication’s 67th Annual Conference; San Diego, CA, USA. 25–29 May 2017.
    1. Rasmussen N.B. Top 10 Most Viewed 360° Videos of 2016. Time. Jul 26, 2016.

Source: PubMed

3
Abonnere