Randomized, Placebo-Controlled, Double-Blind Pilot Study of D-Cycloserine in Chronic Stroke

Andrew J Butler, Justiss Kallos, Stephen N Housley, Michelle C LaPlaca, Stephen F Traynelis, Steven L Wolf, Andrew J Butler, Justiss Kallos, Stephen N Housley, Michelle C LaPlaca, Stephen F Traynelis, Steven L Wolf

Abstract

Stroke is a leading cause of death and disability in the USA. Up to 60% of patients do not fully recover despite intensive physical therapy treatment. N-Methyl-D-aspartate receptors (NMDA-R) have been shown to play a role in synaptic plasticity when activated. D-Cycloserine promotes NMDA receptor function by binding to receptors with unoccupied glycine sites. These receptors are involved in learning and memory. We hypothesized that D-cycloserine, when combined with robotic-assisted physiotherapy (RAP), would result in greater gains compared with placebo + RAP in stroke survivors. Participants (n = 14) were randomized to D-cycloserine plus RAP or placebo plus RAP. Functional, cognitive, and quality-of-life measures were used to assess recovery. There was significant improvement in grip strength of the affected hand within both groups from baseline to 3 weeks (95% confidence interval for mean change, 3.95 ± 2.96 to 4.90 ± 3.56 N for D-cycloserine and 5.72 ± 3.98 to 8.44 ± 4.90 N for control). SIS mood domain showed improvement for both groups (95% confidence interval for mean change, 72.6 ± 16.3 to 82.9 ± 10.9 for D-cycloserine and 82.9 ± 13.5 to 90.3 ± 9.9 for control). This preliminary study does not provide evidence that D-cycloserine can provide greater gains in learning compared with placebo for stroke survivors.

Figures

Figure 1
Figure 1
Experimental design and time course of the study. After completing baseline testing, there were 6 visits at which medication (placebo or D-cycloserine at 100 mg dose) was dispensed. Dosing was oral and twice weekly (Monday and Wednesday) throughout the study. The study design included one session per week (Friday) in which the drug was not dispensed. Volunteers received medication immediately preceding the robotic training sessions. Final examination was administered on Day 30. + indicates medication given and − indicates no medication given. RAP: robotic-assisted physiotherapy.
Figure 2
Figure 2
Robotic weighted score. Weighted scores on 6 times during which placebo or D-cycloserine (D-cycloserine) at 100 mg dose was dispensed. Across all subjects, mean weighted score on the (a) balloon game and (b) thera-pong improved significantly, from baseline to end of week 1, to week 2, and to week 3. However, there were no significant differences according to treatment group or interaction for any of these time intervals.

References

    1. American Heart Association (AHA) Writing Group for the Statistics Committee and Stroke Statistics Subcommittee: Heart Disease and Stroke Statistics. Dallas, Tex, USA: American Heart Association; 2005.
    1. Lo A. C., Guarino P. D., Richards L. G., et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. The New England Journal of Medicine. 2010;362(19):1772–1783. doi: 10.1056/nejmoa0911341.
    1. Hendricks H. T., van Limbeek J., Geurts A. C., Zwarts M. J. Motor recovery after stroke: a systematic review of the literature. Archives of Physical Medicine and Rehabilitation. 2002;83(11):1629–1637. doi: 10.1053/apmr.2002.35473.
    1. Schaechter J. D. Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress in Neurobiology. 2004;73(1):61–72. doi: 10.1016/j.pneurobio.2004.04.001.
    1. Sivan M., O'Connor R. J., Makower S., Levesley M., Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. Journal of Rehabilitation Medicine. 2011;43(3):181–189. doi: 10.2340/16501977-0674.
    1. Lang C. E., MacDonald J. R., Reisman D. S., et al. Observation of amounts of movement practice provided during stroke rehabilitation. Archives of Physical Medicine and Rehabilitation. 2009;90(10):1692–1698. doi: 10.1016/j.apmr.2009.04.005.
    1. Kavanagh S., Knapp M., Patel A. Costs and disability among stroke patients. Journal of Public Health Medicine. 1999;21(4):385–394. doi: 10.1093/pubmed/21.4.385.
    1. Wade D. T., Langton-Hewer R., Wood V. A., Skilbeck C. E., Ismail H. M. The hemiplegic arm after stroke: measurement and recovery. Journal of Neurology Neurosurgery and Psychiatry. 1983;46(6):521–524. doi: 10.1136/jnnp.46.6.521.
    1. Sunderland A., Tinson D., Bradley L., Hewer R. L. Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. Journal of Neurology, Neurosurgery & Psychiatry. 1989;52(11):1267–1272. doi: 10.1136/jnnp.52.11.1267.
    1. Duncan P. W., Goldstein L. B., Matchar D., Divine G. W., Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23(8):1084–1089. doi: 10.1161/01.str.23.8.1084.
    1. Sunderland A., Tinson D. J., Bradley E. L., Fletcher D., Langton Hewer R., Wade D. T. Enhanced physical therapy improves recovery of arm function after stroke. a randomised controlled trial. Journal of Neurology Neurosurgery and Psychiatry. 1992;55(7):530–535. doi: 10.1136/jnnp.55.7.530.
    1. Parry R. H., Lincoln N. B., Vass C. D. Effect of severity of arm impairment on response to additional physiotherapy early after stroke. Clinical Rehabilitation. 1999;13(3):187–198. doi: 10.1191/026921599676198929.
    1. Nowak D. A., Grefkes C., Ameli M., Fink G. R. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabilitation and Neural Repair. 2009;23(7):641–656. doi: 10.1177/1545968309336661.
    1. Bolognini N., Pascual-Leone A., Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of NeuroEngineering and Rehabilitation. 2009;6, article 8 doi: 10.1186/1743-0003-6-8.
    1. O'Malley M. K., Ro T., Levin H. S. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function. Archives of Physical Medicine and Rehabilitation. 2006;87(12, supplement 2):59–66. doi: 10.1016/j.apmr.2006.08.332.
    1. Barria A., Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005;48(2):289–301. doi: 10.1016/j.neuron.2005.08.034.
    1. Yaka R., Biegon A., Grigoriadis N., et al. D-cycloserine improves functional recovery and reinstates long-term potentiation (LTP) in a mouse model of closed head injury. The FASEB Journal. 2007;21(9):2033–2041. doi: 10.1096/fj.06-7856com.
    1. Ressler K. J., Rothbaum B. O., Tannenbaum L., et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry. 2004;61(11):1136–1144. doi: 10.1001/archpsyc.61.11.1136.
    1. Hood W. F., Compton R. P., Monahan J. B. D-cycloserine: a ligand for the N-methyl-d-aspartate coupled glycine receptor has partial agonist characteristics. Neuroscience Letters. 1989;98(1):91–95. doi: 10.1016/0304-3940(89)90379-0.
    1. Watson G. B., Bolanowski M. A., Baganoff M. P., Deppeler C. L., Lanthorn T. H. D-cycloserine acts as a partial agonist at the glycine modulatory site of the NMDA receptor expressed in Xenopus oocytes. Brain Research. 1990;510(1):158–160. doi: 10.1016/0006-8993(90)90745-w.
    1. Schwartz B. L., Hashtroudi S., Herting R. L., Schwartz P., Deutsch S. I. d-Cycloserine enhances implicit memory in Alzheimer patients. Neurology. 1996;46(2):420–424. doi: 10.1212/WNL.46.2.420.
    1. Tsai G. E., Falk W. E., Gunther J., Coyle J. T. Improved cognition in Alzheimer's disease with short-term D-cycloserine treatment. The American Journal of Psychiatry. 1999;156(3):467–469.
    1. Cherry K. M., Lenze E. J., Lang C. E. Combining d-cycloserine with motor training does not result in improved general motor learning in neurologically intact people or in people with stroke. Journal of Neurophysiology. 2014;111(12):2516–2524. doi: 10.1152/jn.00882.2013.
    1. Schaefer S. Y., Lang C. E. Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study. Journal of Motor Behavior. 2012;44(5):313–327. doi: 10.1080/00222895.2012.708367.
    1. Nadeau S. E., Davis S. E., Wu S. S., Dai Y., Richards L. G. A pilot randomized controlled trial of D-cycloserine and distributed practice as adjuvants to constraint-induced movement therapy after stroke. Neurorehabilitation and Neural Repair. 2014;28(9):885–895. doi: 10.1177/1545968314532032.
    1. Wolf S. L., Winstein C. J., Miller J. P., et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. The Journal of the American Medical Association. 2006;296(17):2095–2104. doi: 10.1001/jama.296.17.2095.
    1. Kutner N. G., Zhang R., Butler A. J., Wolf S. L., Alberts J. L. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Physical Therapy. 2010;90(4):493–504. doi: 10.2522/ptj.20090160.
    1. Starkes J. L., Allard F. Cognitive Issues in Motor Expertise. Amsterdam, The Netherlands: North-Holland; 1993.
    1. Hauben U., D'Hooge R., Soetens E., De Deyn P. P. Effects of oral administration of the competitive N-methyl-D-aspartate antagonist, CGP 40116, on passive avoidance, spatial learning, and neuromotor abilities in mice. Brain Research Bulletin. 1999;48(3):333–341. doi: 10.1016/S0361-9230(99)00008-8.
    1. Wolf S. L., Binder-Macleod S. A. Electromyographic biofeedback applications to the hemiplegic patient. Changes in upper extremity neuromuscular and functional status. Physical Therapy. 1983;63(9):1393–1403.
    1. Folstein M. F., Folstein S. E., McHugh P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Hofmann S. G., Pollack M. H., Otto M. W. Augmentation treatment of psychotherapy for anxiety disorders with D-cycloserine. CNS Drug Reviews. 2006;12(3-4):208–217. doi: 10.1111/j.1527-3458.2006.00208.x.
    1. Wolf S. L., Sahu K., Bay R. C., et al. The HAAPI (Home Arm Assistance Progression Initiative) trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabilitation & Neural Repair. 2015 doi: 10.1177/1545968315575612.
    1. Wesnes K., Warburton D. M. A comparison of temazepam and flurazepam in terms of sleep quality and residual changes in performance. Neuropsychobiology. 1984;11(4):255–259. doi: 10.1159/000118090.
    1. Coull J. T., Middleton H. C., Robbins T. W., Sahakian B. J. Clonidine and diazepam have differential effects on tests of attention and learning. Psychopharmacology. 1995;120(3):322–332. doi: 10.1007/BF02311180.
    1. Duncan P. W., Bode R. K., Lai S. M., Perera S. Rasch analysis of a new stroke-specific outcome scale: the stroke impact scale. Archives of Physical Medicine and Rehabilitation. 2003;84(7):950–963. doi: 10.1016/s0003-9993(03)00035-2.
    1. Mathiowetz V., Volland G., Kashman N., Weber K. Adult norms for the Box and Block Test of manual dexterity. American Journal of Occupational Therapy. 1985;39(6):386–391. doi: 10.5014/ajot.39.6.386.
    1. Higgins J., Salbach N. M., Wood-Dauphinee S., Richards C. L., Côté R., Mayo N. E. The effect of a task-oriented intervention on arm function in people with stroke: a randomized controlled trial. Clinical Rehabilitation. 2006;20(4):296–310. doi: 10.1191/0269215505cr943oa.
    1. Suputtitada A., Suwanwela N. C., Tumvitee S. Effectiveness of constraint-induced movement therapy in chronic stroke patients. Journal of the Medical Association of Thailand. 2004;87(12):1482–1490.
    1. Green D. M., Swets J. A. Signal Detection Theory and Psychophysics. New York, NY, USA: John Wiley & Sons; 1966.
    1. Grier J. B. Nonparametric indexes for sensitivity and bias: computing formulas. Psychological Bulletin. 1971;75(6):424–429. doi: 10.1037/h0031246.
    1. Barker J. M., Wright D. W., Goldstein F. C., Ockerman J., Ratcliff J. J., Laplaca M. C. The DETECT system: portable, reduced-length neuropsychological testing for mild traumatic brain injury via a novel immersive environment. Journal of Medical Engineering & Technology. 2007;31(3):161–169. doi: 10.1080/03091900500272781.
    1. Bayley P. J., Wixted J. T., Hopkins R. O., Squire L. R. Yes/no recognition, forced-choice recognition, and the human hippocampus. Journal of Cognitive Neuroscience. 2008;20(3):505–512. doi: 10.1162/jocn.2008.20.3.505.
    1. Vellone E., Savini S., Fida R., et al. Psychometric evaluation of the stroke impact scale 3.0. Journal of Cardiovascular Nursing. 2015;30(3):229–241. doi: 10.1097/jcn.0000000000000145.
    1. Lin K.-C., Fu T., Wu C.-Y., et al. Minimal detectable change and clinically important difference of the stroke impact scale in stroke patients. Neurorehabilitation and Neural Repair. 2010;24(5):486–492. doi: 10.1177/1545968309356295.
    1. Chen H.-M., Chen C. C., Hsueh I.-P., Huang S.-L., Hsieh C.-L. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabilitation and Neural Repair. 2009;23(5):435–440. doi: 10.1177/1545968308331146.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd. Hillsdale, NJ, USA: Lawrence Erlbaum Associates; 1988.
    1. Ferguson C. J. An effect size primer: a guide for clinicians and researchers. Professional Psychology: Research and Practice. 2009;40(5):532–538. doi: 10.1037/a0015808.
    1. Tukey J. W. Exploratory Data Analysis. Addison-Wesley; 1977.
    1. Traynelis S. F., Wollmuth L. P., McBain C. J., et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews. 2010;62(3):405–496. doi: 10.1124/pr.109.002451.
    1. Rosenkranz K., Kacar A., Rothwell J. C. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. The Journal of Neuroscience. 2007;27(44):12058–12066. doi: 10.1523/jneurosci.2663-07.2007.
    1. Fishkin R. J., Ince E. S., Carlezon W. A., Jr., Dunn R. W. D-cycloserine attenuates scopolamine-induced learning and memory deficits in rats. Behavioral and Neural Biology. 1993;59(2):150–157. doi: 10.1016/0163-1047(93)90886-m.
    1. Binshtok A. M., Fleidervish I. A., Sprengel R., Gutnick M. J. NMDA receptors in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2C subunit. The Journal of Neuroscience. 2006;26(2):708–715. doi: 10.1523/jneurosci.4409-05.2006.
    1. Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529–540. doi: 10.1016/0896-6273(94)90210-0.
    1. Scherzer C. R., Landwehrmeyer G. B., Kerner J. A., et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. Journal of Comparative Neurology. 1998;390(1):75–90. doi: 10.1002/(sici)1096-9861(19980105)390:1lt;75::aid-cne7>;2-n.
    1. Hasan M. T., Hernandez-Gonzalez S., Dogbevia G., et al. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice. Nature Communications. 2013;4, article 2258 doi: 10.1038/ncomms3258.
    1. Kessels H. W., Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron. 2009;61(3):340–350. doi: 10.1016/j.neuron.2009.01.015.
    1. Norberg M. M., Krystal J. H., Tolin D. F. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biological Psychiatry. 2008;63(12):1118–1126. doi: 10.1016/j.biopsych.2008.01.012.
    1. Walker D. L., Ressler K. J., Lu K.-T., Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. Journal of Neuroscience. 2002;22(6):2343–2351.
    1. Hofmann S. G., Meuret A. E., Smits J. A. J., et al. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Archives of General Psychiatry. 2006;63(3):298–304. doi: 10.1001/archpsyc.63.3.298.
    1. Sheinin A., Shavit S., Benveniste M. Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology. 2001;41(2):151–158. doi: 10.1016/S0028-3908(01)00073-9.
    1. Colombo R., Pisano F., Micera S., et al. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabilitation and Neural Repair. 2008;22(1):50–63. doi: 10.1177/1545968307303401.
    1. Hesse S., Werner C., Pohl M., Rueckriem S., Mehrholz J., Lingnau M. L. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–1966. doi: 10.1161/01.str.0000177865.37334.ce.
    1. Volpe B. T., Krebs H. I., Hogan N., Edelsteinn L., Diels C. M., Aisen M. L. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999;53(8):1874–1876. doi: 10.1212/WNL.53.8.1874.
    1. Bütefisch C. M., Hummelsheim H., Denzler P., Mauritz K.-H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. Journal of the Neurological Sciences. 1995;130(1):59–68. doi: 10.1016/0022-510x(95)00003-k.
    1. Liepert J., Bauder H., Miltner W. H. R., Taub E., Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–1216. doi: 10.1161/01.str.31.6.1210.
    1. Nudo R. J., Wise B. M., SiFuentes F., Milliken G. W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794. doi: 10.1126/science.272.5269.1791.
    1. Hebb D. O. The Organization of Behavior; A Neuropsychological Theory. New York, NY, USA: Wiley; 1949.

Source: PubMed

3
Abonnere