Possible Mechanisms for the Effects of Sound Vibration on Human Health

Lee Bartel, Abdullah Mosabbir, Lee Bartel, Abdullah Mosabbir

Abstract

This paper presents a narrative review of research literature to "map the landscape" of the mechanisms of the effect of sound vibration on humans including the physiological, neurological, and biochemical. It begins by narrowing music to sound and sound to vibration. The focus is on low frequency sound (up to 250 Hz) including infrasound (1-16 Hz). Types of application are described and include whole body vibration, vibroacoustics, and focal applications of vibration. Literature on mechanisms of response to vibration is categorized into hemodynamic, neurological, and musculoskeletal. Basic mechanisms of hemodynamic effects including stimulation of endothelial cells and vibropercussion; of neurological effects including protein kinases activation, nerve stimulation with a specific look at vibratory analgesia, and oscillatory coherence; of musculoskeletal effects including muscle stretch reflex, bone cell progenitor fate, vibration effects on bone ossification and resorption, and anabolic effects on spine and intervertebral discs. In every category research on clinical applications are described. The conclusion points to the complexity of the field of vibrational medicine and calls for specific comparative research on type of vibration delivery, amount of body or surface being stimulated, effect of specific frequencies and intensities to specific mechanisms, and to greater interdisciplinary cooperation and focus.

Keywords: hemodynamic; musculoskeletal; music and health; music as vibration; neurological; physioacoustic; vibration; vibroacoustic therapy; whole body vibration.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. MacDonald R., Kreutz G., Mitchell L. Music, Health, and Wellbeing. Oxford University Press; Oxford, UK: 2012. What is Music, Health, and Wellbeing and Why is it Important?
    1. Spintge R., Droh R. MusicMedicine. MMB Music Inc.; St. Louis, MO, USA: 1992. Introductory Remarks; pp. 1–2.
    1. Maranto D. Foreword. In: Wigram T., Saperston B., West R., editors. The Art & Science of Music Therapy: A Handbook. Routledge; New York, NY, USA: 1995. pp. ix–xii.
    1. Dworkin R.H., Turk D.C., Farrar J.T., Haythornthwaite J.A., Jensen M.P., Katz N.P., Kerns R.D., Stucki G., Allen R.R., Bellamy N., et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain. 2005;113:9–19. doi: 10.1016/j.pain.2004.09.012.
    1. Craver C., Bechtel W. Mechanisms and mechanistic explanation. In: Sarkar S., Pfeifer J., editors. The Philosophy of Science: An Encyclopedia. Routledge; New York, NY, USA: 2006. pp. 469–478.
    1. Stegemöller E. Exploring the Mechanisms of Music Therapy|The Scientist Magazine®. [(accessed on 25 March 2021)]; Available online: .
    1. Cheever T., Taylor A., Finkelstein R., Edwards E., Thomas L., Bradt J., Holochwost S.J., Johnson J.K., Limb C., Patel A.D., et al. NIH/Kennedy Center Workshop on Music and the Brain: Finding Harmony. Neuron. 2018;97:1214–1218. doi: 10.1016/j.neuron.2018.02.004.
    1. Chanda M.L., Levitin D.J. The neurochemistry of music. Trends Cogn. Sci. 2013;17:179–193. doi: 10.1016/j.tics.2013.02.007.
    1. Möckel M., Röcker L., Störk T., Vollert J., Danne O., Eichstädt H., Müller R., Hochrein H. Immediate physiological responses of healthy volunteers to different types of music: Cardiovascular, hormonal and mental changes. Eur. J. Appl. Physiol. Occup. Physiol. 1994;68:451–459. doi: 10.1007/BF00599512.
    1. Clements-Cortes A., Bartel L. Are We Doing More Than We Know? Possible Mechanisms of Response to Music Therapy. Front. Med. 2018;5:255. doi: 10.3389/fmed.2018.00255.
    1. Thaut M. Neurologic music therapy: From social science to neuroscience. In: Thaut M., McIntosh G., editors. Handbook of Neurologic Music Therapy. Oxford University Press; Oxford, UK: 2014. pp. 1–6.
    1. Altenmüller E., Marco-Pallares J., Münte T.F., Schneider S. Neural Reorganization Underlies Improvement in Stroke-induced Motor Dysfunction by Music-supported Therapy. Ann. N. Y. Acad. Sci. 2009;1169:395–405. doi: 10.1111/j.1749-6632.2009.04580.x.
    1. Kopell N.J., Gritton H.J., Whittington M.A., Kramer M.A. Beyond the connectome: The dynome. Neuron. 2014;83:1319–1328. doi: 10.1016/j.neuron.2014.08.016.
    1. Albouy P., Baillet S., Zatorre R.J. Driving working memory with frequency-tuned noninvasive brain stimulation. Ann. N. Y. Acad. Sci. 2018;1423:126–137. doi: 10.1111/nyas.13664.
    1. Snyder R. Music and Memory: An Introduction. The MIT Press; Cambridge MA, USA: 2000.
    1. Julien C. The enigma of Mayer waves: Facts and models. Cardiovasc. Res. 2006;70:12–21. doi: 10.1016/j.cardiores.2005.11.008.
    1. Mansfield N. Human Response to Vibration. CRC Press; New York, NY, USA: 2005.
    1. Castelo Branco N.A.A., Alves-Pereira M. Vibroacoustic disease. Noise Health. 2004;6:3–20.
    1. Goetz C.G. Jean-Martin Charcot and his vibratory chair for Parkinson disease. Neurology. 2009;73:475–478. doi: 10.1212/WNL.0b013e3181b1640b.
    1. Vibratory Therapeutics . Scientific American. Springer Nature; New York, NY, USA: 1892. p. 265.
    1. Charcot J.M. Vibratory therapeutics.-The application of rapid and continuous vibrations to the treétment of certain diseases of the nervous system. J. Nerv. Ment. Dis. 2011;199:821–827.
    1. Kaeding T. The Historical Evolution of the Therapeutic Application of Whole Body Vibrations: Any Lessons to be Learned? [(accessed on 25 March 2021)];Austin Sports Med. 2016 1:1003. Available online: .
    1. Marín-Cascales E., Alcaraz P.E., Ramos-Campo D.J., Martinez-Rodriguez A., Chung L.H., Rubio-Arias J. Whole-body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis. Medicine. 2018;97:e11918. doi: 10.1097/MD.0000000000011918.
    1. Del Pozo-Cruz B., Adsuar J.C., Parraca J.A., Del Pozo-Cruz J., Olivares P.R., Gusi N. Using whole-body vibration training in patients affected with common neurological diseases: A systematic literature review. J. Altern. Complement. Med. 2012;18:29–41. doi: 10.1089/acm.2010.0691.
    1. Wigram A. Ph.D. Thesis. London University; London, UK: 1996. The Effect of Vibroacoustic Therapy on Clinical and Non-Clinical Populations.
    1. Skille O. VibroAcoustic Therapy. Music Ther. 1989;8:61–77. doi: 10.1093/mt/8.1.61.
    1. Lehikoinen P. The physioacoustic method. In: Wigram T., Dileo C., editors. Music Vibration and Health. Jeffrey Books; Cherry Hill, NJ, USA: 1997. pp. 209–215.
    1. Campbell E.A. Ph.D. Thesis. University of Jyväskylä; Jyväskylän Yliopisto, Finland: 2019. Vibroacoustic Treatment and Self-Care for Managing the Chronic Pain Experience: An Operational Model.
    1. Tyack P.L. Encyclopedia of Ocean Sciences: Second Edition. Elsevier; Amsterdam, The Netherlands: 2001. Bioacoustics; pp. 357–363.
    1. Naghdi L., Ahonen H., Macario P., Bartel L. The effect of low-frequency sound stimulation on patients with fibromyalgia: A clinical study. Pain Res. Manag. 2015;20:e21–e27. doi: 10.1155/2015/375174.
    1. Stenfelt S. Acoustic and physiologic aspects of bone conduction hearing. Adv. Otorhinolaryngol. 2011;71:10–21.
    1. Bartel L.R., Chen R., Alain C., Ross B. Vibroacoustic Stimulation and Brain Oscillation: From Basic Research to Clinical Application. Music Med. 2017;9:153–166. doi: 10.47513/mmd.v9i3.542.
    1. Adams J.A., Uryash A., Bassuk J., Sackner M.A., Kurlansky P. Biological basis of neuroprotection and neurotherapeutic effects of Whole Body Periodic Acceleration (pGz) Med. Hypotheses. 2014;82:681–687. doi: 10.1016/j.mehy.2014.02.031.
    1. Maloney-Hinds C., Petrofsky J.S., Zimmerman G., Hessinger D.A. The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol. Ther. 2009;11:39–43. doi: 10.1089/dia.2008.0011.
    1. Johnson K.O. The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 2001;11:455–461. doi: 10.1016/S0959-4388(00)00234-8.
    1. Gilman S. Joint position sense and vibration sense: Anatomical organisation and assessment. J. Neurol. Neurosurg. Psychiatry. 2002;73:473–477. doi: 10.1136/jnnp.73.5.473.
    1. Lehikoinen P. Physioacoustic Sound in Stimulation of Cell Membranes. Next Wave Ltd.; Helsinki, Finland: 1996.
    1. Skille O., Wigram T. The effects of music, vocalization and vibration on brain and muscle tissues: Studies in vibroacoustic therapy. In: Wigram T., Saperson B., West R., editors. The Art & Science of Music Therapy: A Handbook. Routledge; New York, NY, USA: 1995. pp. 23–57.
    1. Karkkainen M., Mitsui J. The effects of sound based vibration treatment on the human mind and body: The physioacoustic method. J. Int. Soc. Life Inf. Sci. 2006;24:155.
    1. Mosabbir A., Almeida Q.J., Ahonen H. The Effects of Long-Term 40-Hz Physioacoustic Vibrations on Motor Impairments in Parkinson’s Disease: A Double-Blinded Randomized Control Trial. Healthcare. 2020;8:113. doi: 10.3390/healthcare8020113.
    1. Vuong V., Mosabbir A., Paneduro D., Picard L., Faghfoury H., Evans M., Gordon A., Bartel L. Effects of Rhythmic Sensory Stimulation on Ehlers–Danlos Syndrome: A Pilot Study. Pain Res. Manag. 2020;2020:3586767. doi: 10.1155/2020/3586767.
    1. Iaccarino H.F., Singer A.C., Martorell A.J., Rudenko A., Gao F., Gillingham T.Z., Mathys H., Seo J., Kritskiy O., Abdurrob F., et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–235. doi: 10.1038/nature20587.
    1. Clements-Cortes A., Ahonen H., Evans M., Freedman M., Bartel L. Short-Term Effects of Rhythmic Sensory Stimulation in Alzheimer’s Disease: An Exploratory Pilot Study. J. Alzheimer’s Dis. 2016;52:651–660. doi: 10.3233/JAD-160081.
    1. King L.K., Almeida Q.J., Ahonen H. Short-term effects of vibration therapy on motor impairments in Parkinson’s disease. NeuroRehabilitation. 2009;25:297–306. doi: 10.3233/NRE-2009-0528.
    1. Wysocki A., Mary Butler M., Shamliyan T., Robert Kane M.L. Whole-Body Vibration Therapy for Osteoporosis. Ann. Intern. Med. 2011;15:680–686. doi: 10.7326/0003-4819-155-10-201111150-00006.
    1. Osteoporosis Prevention Product Wins FDA Breakthrough Device Designation–Bone Health Technologies. [(accessed on 29 April 2021)]; Available online:
    1. FDA Permits Marketing of New Device Designed to Reduce Sleep Disturbance Related to Nightmares in Certain Adults|FDA. [(accessed on 29 April 2021)]; Available online: .
    1. Sethi S., Yin J., Anderson P.K. Lung flute improves symptoms and health status in COPD with chronic bronchitis: A 26 week randomized controlled trial. Clin. Transl. Med. 2014;3:29. doi: 10.1186/s40169-014-0029-y.
    1. Shipley T., Farouk K., El-Bialy T. Effect of high-frequency vibration on orthodontic tooth movement and bone density. J. Orthod. Sci. 2019;8:15.
    1. Uryash A., Adams J. Vibroacoustic Noninvasive Stimulation (VATS) of Human Coronary Endothelial Cells Induced Syndecan-4, VEGF and KLF2 Mechanosensor Control of eNOS|Circulation. Circulation. 2018;136:A18011.
    1. Uryash A., Adams J. Wearable Vibroacoustic Transthoracic Stimulation (VATS) Provides Cardioprotection by Syndecan-4 Mechanosensor Regulation of NFAT, JNK/ERK in Rats after Myocardial Infarction|Circulation. Circulation. 2018;136:17906.
    1. Chen K., Pittman R.N., Popel A.S. Nitric oxide in the vasculature: Where does it come from and where does it go? A quantitative perspective. Antioxid. Redox Signal. 2008;10:1185–1198. doi: 10.1089/ars.2007.1959.
    1. White C.R., Haidekker M.A., Stevens H.Y., Frangos J.A. Extracellular signal-regulated kinase activation and endothelin-1 production in human endothelial cells exposed to vibration. J. Physiol. 2004;555:565–572. doi: 10.1113/jphysiol.2003.059899.
    1. Uryash A., Wu H., Bassuk J., Kurlansky P., Sackner M.A., Adams J.A. Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation. J. Appl. Physiol. 2009;106:1840–1847. doi: 10.1152/japplphysiol.91612.2008.
    1. Ichioka S., Yokogawa H., Nakagami G., Sekiya N., Hiromi S. In vivo analysis of skin microcirculation and the role of nitric oxide during vibration. Ostomy Wound Manag. 2011;57:40–47.
    1. Uryash A., Adams J. Wearable Vibroacoustic Transthoracic Stimulation Improves Left Ventricular Function, Remodeling and Regulates Syndecan-4 /VEGF Levels in Rats After Myocardial Infarction|Circulation. Circulation. 2018;134:A17052.
    1. Skoglund C.R. Vasodilatation in human skin induced by low-amplitude high-frequency vibration. Clin. Physiol. 1989;9:361–372. doi: 10.1111/j.1475-097X.1989.tb00990.x.
    1. Johnson P.K., Feland J.B., Johnson A.W., Mack G.W., Mitchell U.H. Effect of whole body vibration on skin blood flow and nitric oxide production. J. Diabetes Sci. Technol. 2014;8:889–894. doi: 10.1177/1932296814536289.
    1. Adams J.A., Bassuk J.A., Arias J., Wu H., Jorapur V., Lamas G.A., Kurlansky P. Periodic acceleration (pGz) CPR in a swine model of asphyxia induced cardiac arrest. Short-term hemodynamic comparisons. Resuscitation. 2008;77:132–138. doi: 10.1016/j.resuscitation.2007.10.018.
    1. Adams J.A., Uryash A., Wu H., Bassuk J.A., Nadkarni V., Berg R., Jorapur V., Kurlansky P. Microcirculatory and therapeutic effects of whole body periodic acceleration (pGz) applied after cardiac arrest in pigs. Resuscitation. 2011;82:767–775. doi: 10.1016/j.resuscitation.2011.02.012.
    1. Adams J.A., Wu H., Bassuk J.A., Arias J., Uryash A., Jorapur V., Lamas G.A., Kurlansky P. Periodic acceleration (pGz) prior to whole body Ischemia reperfusion injury provides early cardioprotective preconditioning. Life Sci. 2010;86:707–715. doi: 10.1016/j.lfs.2010.02.022.
    1. Bassuk J.I., Wu H., Arias J., Kurlansky P., Adams J.A. Whole body periodic acceleration (pGz) improves survival and allows for resuscitation in a model of severe hemorrhagic shock in pigs. J. Surg. Res. 2010;164:e281–e289. doi: 10.1016/j.jss.2010.07.047.
    1. Lopez J.R., Uryash A., Kolster J., Estève E., Zhang R., Adams J.A. Enhancing Endogenous Nitric Oxide by Whole Body Periodic Acceleration Elicits Neuroprotective Effects in Dystrophic Neurons. Mol. Neurobiol. 2018;55:8680–8694. doi: 10.1007/s12035-018-1018-8.
    1. Martínez A., Arias J., Bassuk J.A., Wu H., Kurlansky P., Adams J.A. Adrenomedullin Is Increased by Pulsatile Shear Stress on the Vascular Endothelium via Periodic Acceleration (PGz) Peptides. 2008;29:73–78. doi: 10.1016/j.peptides.2007.10.021.
    1. Uryash A., Bassuk J., Kurlansky P., Altamirano F., Lopez J.R., Adams J.A. Antioxidant Properties of Whole Body Periodic Acceleration (pGz) PLoS ONE. 2015;10:e0131392. doi: 10.1371/journal.pone.0131392.
    1. Hoffmann A., Gill H. Externally Applied Vibration at 50 Hz Facilitates Dissolution of Blood Clots In-Vitro. Am. J. Biomed. Sci. 2012;4:274–284. doi: 10.5099/aj120400274.
    1. Hoffmann A., Gill H. Diastolic timed Vibro-Percussion at 50 Hz delivered across a chest wall sized meat barrier enhances clot dissolution and remotely administered Streptokinase effectiveness in an in-vitro model of acute coronary thrombosis. Thromb. J. 2012;10:23. doi: 10.1186/1477-9560-10-23.
    1. Faine B.A., Dayal S., Kumar R., Lentz S.R., Leira E.C. Helicopter “Drip and Ship” Flights Do Not Alter the Pharmacological Integrity of rtPA. J. Stroke Cerebrovasc. Dis. 2018;27:2720–2724. doi: 10.1016/j.jstrokecerebrovasdis.2018.05.049.
    1. Leira E.C., Zaheer A., Schnell T., Torner J.C., Olalde H.M., Pieper A.A., Ortega-Gutierrez S., Nagaraja N., Marks N.L., Adams H.P. Effect of helicopter transport on neurological outcomes in a mouse model of embolic stroke with reperfusion: AIR-MICE pilot study. Int. J. Stroke. 2015;10:119–124. doi: 10.1111/ijs.12619.
    1. Dhanesha N., Schnell T., Rahmatalla S., Deshaw J., Thedens D., Parker B.M., Zimmerman M.B., Pieper A.A., Chauhan A.K., Leira E.C. Low-Frequency Vibrations Enhance Thrombolytic Therapy and Improve Stroke Outcomes. Stroke. 2020;51:1855–1861. doi: 10.1161/STROKEAHA.120.029405.
    1. Kawamura K., Kano Y. Electrical stimulation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway. Neurosci. Lett. 2019;698:81–84. doi: 10.1016/j.neulet.2019.01.015.
    1. Koike Y., iwamoto S., kimata Y., nohno T., hiragami F., kawamura K., numata K., Murai H., Okisima K., Iwata M., et al. Low-frequency vibratory sound induces neurite outgrowth in pc12m3 cells in which nerve growth factor-induced neurite outgrowth is impaired. Tissue Cult. Res. Commun. 2004;23:81–90.
    1. Cho H., Seo Y.K., Jeon S., Yoon H.H., Choi Y.K., Park J.K. Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration. Life Sci. 2012;90:591–599. doi: 10.1016/j.lfs.2012.02.014.
    1. Kim H.J., Kim J.H., Song Y.J., Seo Y.K., Park J.K., Kim C.W. Overexpressed Calponin3 by Subsonic Vibration Induces Neural Differentiation of hUC-MSCs by Regulating the Ionotropic Glutamate Receptor. Appl. Biochem. Biotechnol. 2015;177:48–62. doi: 10.1007/s12010-015-1726-8.
    1. Choi Y.K., Cho H., Seo Y.K., Yoon H.H., Park J.K. Stimulation of sub-sonic vibration promotes the differentiation of adipose tissue-derived mesenchymal stem cells into neural cells. Life Sci. 2012;91:329–337. doi: 10.1016/j.lfs.2012.07.022.
    1. Kantor J., Kantorová L., Marečková J., Peng D., Vilímek Z. Potential of vibroacoustic therapy in persons with cerebral palsy: An advanced narrative review. Int. J. Environ. Res. Public Health. 2019;16:3940. doi: 10.3390/ijerph16203940.
    1. Kantele S., Karinkanta S., Sievänen H. Effects of long-term whole-body vibration training on mobility in patients with multiple sclerosis: A meta-analysis of randomized controlled trials. J. Neurol. Sci. 2015;358:31–37. doi: 10.1016/j.jns.2015.09.357.
    1. Lundeberg T., Nordemar R., Ottoson D. Pain alleviation by vibratory stimulation. Pain. 1984;20:25–44. doi: 10.1016/0304-3959(84)90808-X.
    1. Usoskin D., Zilberter M., Linnarsson S., Hjerling-Leffler J., Uhlén P., Harkany T., Ernfors P. En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons. Proc. Natl. Acad. Sci. USA. 2010;107:16336–16341. doi: 10.1073/pnas.0914705107.
    1. Katusic A., Alimovic S., Mejaski-Bosnjak V. The effect of vibration therapy on spasticity and motor function in children with cerebral palsy: A randomized controlled trial. NeuroRehabilitation. 2013;32:1–8. doi: 10.3233/NRE-130817.
    1. Gay A., Parratte S., Salazard B., Guinard D., Pham T., Legré R., Roll J.P. Proprioceptive feedback enhancement induced by vibratory stimulation in complex regional pain syndrome type I: An open comparative pilot study in 11 patients. Jt. Bone Spine. 2007;74:461–466. doi: 10.1016/j.jbspin.2006.10.010.
    1. Delecluse C., Roelants M., Verschueren S. Strength Increase after Whole-Body Vibration Compared with Resistance Training. Med. Sci. Sport. Exerc. 2003;35:1033–1041. doi: 10.1249/01.MSS.0000069752.96438.B0.
    1. Ko M.S., Sim Y.J., Kim D.H., Jeon H.S. Effects of three weeks of whole-body vibration training on joint-position sense, balance, and gait in children with cerebral palsy: A randomized controlled study. Physiother. Can. 2016;68:99–105. doi: 10.3138/ptc.2014-77.
    1. Howland R.H. Vagus Nerve Stimulation. Curr. Behav. Neurosci. Rep. 2014;1:64–73. doi: 10.1007/s40473-014-0010-5.
    1. Huston J.M., Ochani M., Rosas-Ballina M., Liao H., Ochani K., Pavlov V.A., Gallowitsch-Puerta M., Ashok M., Czura C.J., Foxwell B., et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. 2006;203:1623–1629. doi: 10.1084/jem.20052362.
    1. Vida G., Peña G., Deitch E.A., Ulloa L. α7-Cholinergic Receptor Mediates Vagal Induction of Splenic Norepinephrine. J. Immunol. 2011;186:4340–4346. doi: 10.4049/jimmunol.1003722.
    1. Simon T., Panzolini C., Lavergne J., Srihar A., Vervoordeldonk M., Glaichenhaus N., Blancou P. Stimulation of Splenic Neurovascular Bundle Protect Mice from Developing Collagen-induced Arthritis-ACR Meeting Abstracts; Proceedings of the 2019 ACR/ARP Annual Meeting; Atlanta, GA, USA. 13 November 2019.
    1. Sigurdardóttir G.A., Nielsen P.M., Rønager J., Wang A.G. A pilot study on high amplitude low frequency–music impulse stimulation as an add-on treatment for depression. Brain Behav. 2019;9:e01399. doi: 10.1002/brb3.1399.
    1. Braun Janzen T., Al Shirawi M.I., Rotzinger S., Kennedy S.H., Bartel L. A Pilot Study Investigating the Effect of Music-Based Intervention on Depression and Anhedonia. Front. Psychol. 2019;10:1038. doi: 10.3389/fpsyg.2019.01038.
    1. Julu P.O.O., Kerr A.M., Hansen S., Apartopoulos F., Jamal G.A. Functional evidence of brain stem immaturity in Rett syndrome. Eur. Child Adolesc. Psychiatry. 1997;6:47–54.
    1. Wilfong A.A., Schultz R.J. Vagus nerve stimulation for treatment of epilepsy in Rett syndrome. Dev. Med. Child Neurol. 2007;48:683–686. doi: 10.1111/j.1469-8749.2006.tb01340.x.
    1. Adcock K.S., Chandler C., Buell E.P., Solorzano B.R., Loerwald K.W., Borland M.S., Engineer C.T. Vagus nerve stimulation paired with tones restores auditory processing in a rat model of Rett syndrome. Brain Stimul. 2020;13:1494–1503. doi: 10.1016/j.brs.2020.08.006.
    1. Bergström-Isacsson M., Lagerkvist B., Holck U., Gold C. Neurophysiological responses to music and vibroacoustic stimuli in Rett syndrome. Res. Dev. Disabil. 2014;35:1281–1291. doi: 10.1016/j.ridd.2014.03.002.
    1. Zoppi M., Voegelin M.R., Signorini M., Zamponi A. Pain threshold changes by skin vibratory stimulation in healthy subjects. Acta Physiol. Scand. 1991;143:439–444. doi: 10.1111/j.1748-1716.1991.tb09256.x.
    1. Hollins M., Roy E.A., Crane S.A. Vibratory antinociception: Effects of vibration amplitude and frequency. J. Pain. 2003;4:381–391. doi: 10.1016/S1526-5900(03)00714-4.
    1. Kakigi R., Shibasaki H. Mechanisms of pain relief by vibration and movement. J. Neurol. Neurosurg. Psychiatry. 1992;55:282–286. doi: 10.1136/jnnp.55.4.282.
    1. Hollins M., McDermott K., Harper D. How does vibration reduce pain? Perception. 2014;43:70–84. doi: 10.1068/p7637.
    1. Cerciello S., Rossi S., Visonà E., Corona K., Oliva F. Clinical applications of vibration therapy in orthopaedic practice. Muscles. Ligaments Tendons J. 2016;6:147–156. doi: 10.32098/mltj.01.2016.18.
    1. Lurie R.C., Cimino S.R., Gregory D.E., Brown S.H.M. The effect of short duration low back vibration on pain developed during prolonged standing. Appl. Ergon. 2018;67:246–251. doi: 10.1016/j.apergo.2017.10.007.
    1. Cochrane D.J. Effectiveness of using wearable vibration therapy to alleviate muscle soreness. Eur. J. Appl. Physiol. 2017;117:501–509. doi: 10.1007/s00421-017-3551-y.
    1. Veqar Z., Imtiyaz S. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS) J. Clin. Diagn. Res. 2014;8:LE01–LE04. doi: 10.7860/JCDR/2014/7323.4434.
    1. Muceli S., Farina D., Kirkesola G., Katch F., Falla D. Reduced force steadiness in women with neck pain and the effect of short term vibration. J. Electromyogr. Kinesiol. 2011;21:283–290. doi: 10.1016/j.jelekin.2010.11.011.
    1. Sharma P., Czyz C.N., Wulc A.E. Investigating the Efficacy of Vibration Anesthesia to Reduce Pain from Cosmetic Botulinum Toxin Injections. Aesthetic Surg. J. 2011;31:966–971. doi: 10.1177/1090820X11422809.
    1. Hansson P., Ekblom A. Afferent stimulation induced pain relief in acute oro-facial pain and its failure to induce sufficient pain reduction in dental and oral surgery. Pain. 1984;20:273–278. doi: 10.1016/0304-3959(84)90016-2.
    1. Lobre W.D., Callegari B.J., Gardner G., Marsh C.M., Bush A.C., Dunn W.J. Pain control in orthodontics using a micropulse vibration device: A randomized clinical trial. Angle Orthod. 2016;86:625–630. doi: 10.2319/072115-492.1.
    1. Jing D., Xiao J., Li X., Li Y., Zhao Z. The effectiveness of vibrational stimulus to accelerate orthodontic tooth movement: A systematic review. BMC Oral Health. 2017;17:143. doi: 10.1186/s12903-017-0437-7.
    1. Roy E.A., Hollins M., Maixner W. Reduction of TMD pain by high-frequency vibration: A spatial and temporal analysis. Pain. 2003;101:267–274. doi: 10.1016/S0304-3959(02)00332-9.
    1. National Research Council (US) Committee on Recognition and Alleviation of Pain in Laboratory Animals . Recognition and Alleviation of Pain in Laboratory Animals. National Academies Press; Washington, DC, USA: 2009. [(accessed on 26 March 2021)]. Chapter 2 Mechanisms of Pain. Available online:
    1. Melzack R., Wall P.D. Pain mechanisms: A new theory. Science. 1965;150:971–979. doi: 10.1126/science.150.3699.971.
    1. Moayedi M., Davis K.D. Theories of pain: From specificity to gate control. J. Neurophysiol. 2013;109:5–12. doi: 10.1152/jn.00457.2012.
    1. Mendell L.M. Constructing and deconstructing the gate theory of pain. Pain. 2014;155:210–216. doi: 10.1016/j.pain.2013.12.010.
    1. Melzack R. Pain and the neuromatrix in the brain. J. Dent. Educ. 2001;65:1378–1382. doi: 10.1002/j.0022-0337.2001.65.12.tb03497.x.
    1. Salter M.W., Henry J.L. Physiological characteristics of responses of wide dynamic range spinal neurones to cutaneously applied vibration in the cat. Brain Res. 1990;507:69–84. doi: 10.1016/0006-8993(90)90524-F.
    1. Li Q.Q., Shi G.X., Xu Q., Wang J., Liu C.Z., Wang L.P. Acupuncture effect and central autonomic regulation. Evid. Based Complement. Altern. Med. 2013;2013:267959. doi: 10.1155/2013/267959.
    1. Xu J., Tany X., Guo Y. Effect of somatosensory music low frequency acoustic wave on 12 main and collateral channels and acupuncture point microcirculation on 30 cases of healthy people. JCAM. 2014;30:8–14.
    1. Bratila F., Moldovan F. Music acupuncture stimulation method-PubMed. Rom. J. Intern. Med. 2007;45:407–411.
    1. Weber A., Busbridge S., Governo R. Evaluation of the Efficacy of Musical Vibroacupuncture in Pain Relief: A Randomized Controlled Pilot Study. Neuromodul. Technol. Neural Interface. 2020:ner.13281. doi: 10.1111/ner.13281.
    1. Salter M.W., Henry J.L. Evidence that adenosine mediates the depression of spinal dorsal horn neurons induced by peripheral vibration in the cat. Neuroscience. 1987;22:631–650. doi: 10.1016/0306-4522(87)90359-9.
    1. Safarov M., Kerimov S. The effect of low-frequency vibration on GABA metabolism in brain structures. Fiziol. Zhurnal. 1991;37:3–7.
    1. Kerimov S., Safarov M. Effect of vibration on gamma-aminobutyric acid metabolism in the brain in various functional conditions of the adrenal cortex. Fiziol. Zhurnal. 1992;38:3–7.
    1. Jamali S., Ross B. Somatotopic finger mapping using MEG: Toward an optimal stimulation paradigm. Clin. Neurophysiol. 2013;124:1659–1670. doi: 10.1016/j.clinph.2013.01.027.
    1. Jamali S., Fujioka T., Ross B. Neuromagnetic beta and gamma oscillations in the somatosensory cortex after music training in healthy older adults and a chronic stroke patient. Clin. Neurophysiol. 2014;125:1213–1222. doi: 10.1016/j.clinph.2013.10.045.
    1. Ross B., Jamali S., Miyazaki T., Fujioka T. Synchronization of beta and gamma oscillations in the somatosensory evoked neuromagnetic steady-state response in the somatosensory system around 20 Hz. Exp. Neurol. 2013;245:40–51. doi: 10.1016/j.expneurol.2012.08.019.
    1. Bartel L. International Dictionary of Music Therapy. Routledge; New York, NY, USA: 2013. Low frequency sound therapy.
    1. Mauguière F., Merlet I., Forss N., Vanni S., Jousmäki V., Adeleine P., Hari R. Activation of a distributed somatosensory cortical network in the human brain: A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part II: Effects of stimulus rate, attention and stimulus detection. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials. 1997;104:290–295. doi: 10.1016/S0013-4694(97)00018-7.
    1. Mauguière F., Merlet I., Forss N., Vanni S., Jousmäki V., Adeleine P., Hari R. Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials. 1997;104:281–289. doi: 10.1016/S0013-4694(97)00006-0.
    1. Bardouille T., Picton T.W., Ross B. Attention modulates beta oscillations during prolonged tactile stimulation. Eur. J. Neurosci. 2010;31:761–769. doi: 10.1111/j.1460-9568.2010.07094.x.
    1. Patel A. The Cognitive Neuroscience of Music. Oxford University Press; Oxford, UK: 2012. A new approach to the cognitive neuroscience of melody; pp. 1–466.
    1. Ross B., Herdman A.T., Pantev C. Stimulus Induced Desynchronization of Human Auditory 40-Hz Steady-State Responses. J. Neurophysiol. 2005;94:4082–4093. doi: 10.1152/jn.00469.2005.
    1. Pastor M.A., Artieda J., Arbizu J., Marti-Climent J.M., Pañuelas I., Masdeu J.C. Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J. Neurosci. 2002;22:10501–10506. doi: 10.1523/JNEUROSCI.22-23-10501.2002.
    1. Miyazaki T., Thompson J., Fujioka T., Ross B. Sound envelope encoding in the auditory cortex revealed by neuromagnetic responses in the theta to gamma frequency bands. Brain Res. 2013;1506:64–75. doi: 10.1016/j.brainres.2013.01.047.
    1. Lozano A.M., Lipsman N. Probing and Regulating Dysfunctional Circuits Using Deep Brain Stimulation. Neuron. 2013;77:406–424. doi: 10.1016/j.neuron.2013.01.020.
    1. Llinás R., Ribary U., Jeanmonod D., Cancro R., Kronberg E., Schulman J., Zonenshayn M., Magnin M., Morel A., Siegmund M. Thalamocortical dysrhythmia I. Functional and imaging aspects. Thalamus Relat. Syst. 2001 doi: 10.1017/S1472928801000231.
    1. Llinas R.R., Ribary U., Jeanmonod D., Kronberg E., Mitra P.P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA. 1999;96:15222–15227. doi: 10.1073/pnas.96.26.15222.
    1. Llinas R., Ribary U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci. USA. 1993;90:2078–2081. doi: 10.1073/pnas.90.5.2078.
    1. Ribary U., Ioannides A.A., Singh K.D., Hasson R., Bolton J.P.R., Lado F., Mogilner A., Llinás R. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl. Acad. Sci. USA. 1991;88:11037–11041. doi: 10.1073/pnas.88.24.11037.
    1. Llinás R., Urbano F.J., Leznik E., Ramírez R.R., Van Marle H.J.F. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 2005;28:325–333. doi: 10.1016/j.tins.2005.04.006.
    1. Fallon N., Chiu Y., Nurmikko T., Stancak A. Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. Eur. J. Pain. 2018;22:49–57. doi: 10.1002/ejp.1076.
    1. Jensen K.B., Loitoile R., Kosek E., Petzke F., Carville S., Fransson P., Marcus H., Williams S.C.R., Choy E., Mainguy Y., et al. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol. Pain. 2012;8:32. doi: 10.1186/1744-8069-8-32.
    1. Braun Janzen T., Paneduro D., Picard L., Gordon A., Bartel L.R. A parallel randomized controlled trial examining the effects of rhythmic sensory stimulation on fibromyalgia symptoms. PLoS ONE. 2019;14:e0212021. doi: 10.1371/journal.pone.0212021.
    1. Dockstader C., Wang F., Bouffet E., Mabbott D.J. Gamma deficits as a neural signature of cognitive impairment in children treated for brain tumors. J. Neurosci. 2014;34:8813–8824. doi: 10.1523/JNEUROSCI.5220-13.2014.
    1. Stam C.J., Van Cappellen van Walsum A.M., Pijnenburg Y.A.L., Berendse H.W., De Munck J.C., Scheltens P., Van Dijk B.W. Generalized synchronization of MEG recordings in Alzheimer’s disease: Evidence for involvement of the gamma band. J. Clin. Neurophysiol. 2002;19:562–574. doi: 10.1097/00004691-200212000-00010.
    1. Martorell A.J., Paulson A.L., Suk H.J., Abdurrob F., Drummond G.T., Guan W., Young J.Z., Kim D.N.W., Kritskiy O., Barker S.J., et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell. 2019;177:256–271.e22. doi: 10.1016/j.cell.2019.02.014.
    1. Wilson C. Can Listening to a Low Hum Destroy Alzheimer’s Brain Plaques?|New Scientist. [(accessed on 26 March 2021)]; Available online: .
    1. Weaver C. Brain-Wave Treatment for Alzheimer’s Is Promising, but the First Human Subject Is Left Behind|. [(accessed on 26 March 2021)]; Available online:
    1. Neumann W.J., Schroll H., De Almeida Marcelino A.L., Horn A., Ewert S., Irmen F., Krause P., Schneider G.H., Hamker F., Kühn A.A. Functional segregation of basal ganglia pathways in Parkinson’s disease. Brain. 2018;141:2655–2669. doi: 10.1093/brain/awy206.
    1. Desmoulin G.T., Szostek J.S., Khan A.H., Al-Ameri O.S., Hunter C.J., Bogduk N. Spinal intervention efficacy on correcting cervical vertebral axes of rotation and the resulting improvements in pain, disability and psychsocial measures. J. Musculoskelet. Pain. 2012;20:31–40. doi: 10.3109/10582452.2011.635843.
    1. Susan Rotzinger B., Kennedy S., Lam R.W., Kennedy S.H., Beaulieu S., Montréal Glenda MacQueen F., Calgary Diane McIntosh F., Vancouver Arun Ravindran F.V., Toronto F. The Canadian Biomarker Integration Network for Depression (CAN-BIND): Looking Deeper into Major Depressive Disorder. CANMAT; Toronto, ON, Canada: 2019.
    1. Smit D.J.A., Posthuma D., Boomsma D.I., De Geus E.J.C. The relation between frontal EEG asymmetry and the risk for anxiety and depression. Biol. Psychol. 2007;74:26–33. doi: 10.1016/j.biopsycho.2006.06.002.
    1. van der Vinne N., Vollebregt M.A., van Putten M.J.A.M., Arns M. Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage Clin. 2017;16:79–87. doi: 10.1016/j.nicl.2017.07.006.
    1. Field T., Martinez A., Nawrocki T., Pickens J., Fox N., Schanberg S. Music shifts frontal EEG in depressed adolescents. Clin. Trial. 1998;33:109–116.
    1. Jones N.A., Field T. Massage and music therapies attenuate frontal EEG asymmetry in depressed adolescents. Adolescence. 1999;34:529–534.
    1. Petchkovsky L., Robertson-Gillam K., Kropotov J., Petchkovsky M. Using QEEG parameters (asymmetry, coherence, and P3a novelty response) to track improvement in depression after choir therapy. Adv. Ment. Health. 2013;11:257–267. doi: 10.5172/jamh.2013.11.3.257.
    1. Wilcock I., Whatman C., Harris N., Keogh J. Vibration training: Could it enhance the strength, power, or speed of athletes? J. Strength Cond. Res. 2009;23:593–603.
    1. Ceccarelli G., Benedetti L., Galli D., Prè D., Silvani G., Crosetto N., Magenes G., Cusella De Angelis M.G. Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells. J. Tissue Eng. Regen. Med. 2014;8:396–406. doi: 10.1002/term.1533.
    1. Schiaffino S., Dyar K.A., Ciciliot S., Blaauw B., Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294–4314. doi: 10.1111/febs.12253.
    1. Corbiere T.F., Koh T.J. Local low-intensity vibration improves healing of muscle injury in mice. Physiol. Rep. 2020;8:e14356. doi: 10.14814/phy2.14356.
    1. Lee S.J., McPherron A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA. 2001;98:9306–9311. doi: 10.1073/pnas.151270098.
    1. Gomes M.D., Lecker S.H., Jagoe R.T., Navon A., Goldberg A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA. 2001;98:14440–14445. doi: 10.1073/pnas.251541198.
    1. Léger B., Cartoni R., Praz M., Lamon S., Dériaz O., Crettenand A., Gobelet C., Rohmer P., Konzelmann M., Luthi F., et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J. Physiol. 2006;576:923–933. doi: 10.1113/jphysiol.2006.116715.
    1. Sandri M., Sandri C., Gilbert A., Skurk C., Calabria E., Picard A., Walsh K., Schiaffino S., Lecker S.H., Goldberg A.L. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117:399–412. doi: 10.1016/S0092-8674(04)00400-3.
    1. Ren Z., Lan Q., Chen Y., Chan Y.W.J., Mahady G., Lee S.M.-Y. Low-Magnitude High-Frequency Vibration Decreases Body Weight Gain and Increases Muscle Strength by Enhancing the p38 and AMPK Pathways in db/db Mice. Diabetes Metab. Syndr. Obes. Targets Ther. 2020;13:979–989. doi: 10.2147/DMSO.S228674.
    1. Kosar A.C., Candow D.G., Putland J.T. Potential beneficial effects of whole-body vibration formuscle recovery after exercise. J. Strength Cond. Res. 2012;26:2907–2911. doi: 10.1519/JSC.0b013e318242a4d3.
    1. Lin W.C., Lee C.L., Chang N.J. Acute effects of dynamic stretching followed by vibration foam rolling on sports performance of badminton athletes. J. Sport. Sci. Med. 2020;19:420–428.
    1. Ostrowski K., Rohde T., Asp S., Schjerling P., Pedersen B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999;515:287–291. doi: 10.1111/j.1469-7793.1999.287ad.x.
    1. Olfert I.M., Malek M.H., Eagan T.M.L., Wagner H., Wagner P.D. Inflammatory cytokine response to exercise in alpha-1-antitrypsin deficient COPD patients “on” or “off” augmentation therapy. BMC Pulm. Med. 2014;14:106. doi: 10.1186/1471-2466-14-106.
    1. Brown W.M.C., Davison G.W., McClean C.M., Murphy M.H. A Systematic Review of the Acute Effects of Exercise on Immune and Inflammatory Indices in Untrained Adults. Sport. Med. Open. 2015;1:35. doi: 10.1186/s40798-015-0032-x.
    1. Lage V.K.S., Lacerda A.C.R., Neves C.D.C., Chaves M.G.A., Soares A.A., Lima L.P., Martins J.B., Matos M.A., Vieira É.L.M., Teixeira A.L., et al. Acute Effects of Whole-Body Vibration on Inflammatory Markers in People with Chronic Obstructive Pulmonary Disease: A Pilot Study. Rehabil. Res. Pract. 2018;2018:5480214. doi: 10.1155/2018/5480214.
    1. Gloeckl R., Heinzelmann I., Baeuerle S., Damm E., Schwedhelm A.L., Diril M., Buhrow D., Jerrentrup A., Kenn K. Effects of whole body vibration in patients with chronic obstructive pulmonary disease-A randomized controlled trial. Respir. Med. 2012;106:75–83. doi: 10.1016/j.rmed.2011.10.021.
    1. Christie J. Progressive resistance strength training for improving physical function in older adults. Int. J. Older People Nurs. 2011;6:244–246. doi: 10.1111/j.1748-3743.2011.00291.x.
    1. Mayer F., Scharhag-Rosenberger F., Carlsohn A., Cassel M., Müller S., Scharhag J. The Intensity and Effects of Strength Training in the Elderly. Dtsch. Aerzteblatt Online. 2011;108:359–364. doi: 10.3238/arztebl.2011.0359.
    1. Zhang L., Weng C., Liu M., Wang Q., Liu L., He Y. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: A pilot randomized controlled trial. Clin. Rehabil. 2014;28:59–68. doi: 10.1177/0269215513492162.
    1. Wu S., Ning H.T., Xiao S.M., Hu M.Y., Wu X.Y., Deng H.W., Feng H. Effects of vibration therapy on muscle mass, muscle strength and physical function in older adults with sarcopenia: A systematic review and meta-analysis. Eur. Rev. Aging Phys. Act. 2020;17:14. doi: 10.1186/s11556-020-00247-5.
    1. Wadsworth D., Lark S. Effects of Whole-Body Vibration Training on the Physical Function of the Frail Elderly: An Open, Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020;101:1111–1119. doi: 10.1016/j.apmr.2020.02.009.
    1. Bushby K., Finkel R., Birnkrant D.J., Case L.E., Clemens P.R., Cripe L., Kaul A., Kinnett K., McDonald C., Pandya S., et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: Implementation of multidisciplinary care. Lancet Neurol. 2010;9:177–189. doi: 10.1016/S1474-4422(09)70272-8.
    1. Moreira-Marconi E., Sá-Caputo D.C., Dionello C.F., Guedes-Aguiar E.O., Sousa-Gonçalves C.R., Morel D.S., Paineiras-Domingos L.L., Souza P.L., Kütter C.R., Costa-Cavalcanti R.G., et al. Whole-body vibration exercise is well tolerated in patients with duchenne muscular dystrophy: A systematic review. Afr. J. Tradit. Complement. Altern. Med. 2017;14:2–10. doi: 10.21010/ajtcam.v14i4S.1.
    1. Chen B., Lin T., Yang X., Li Y., Xie D., Zheng W., Cui H., Deng W., Tan X. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/catenin signaling pathway activation. Int. J. Mol. Med. 2016;38:1531–1540. doi: 10.3892/ijmm.2016.2757.
    1. Zhou Y., Guan X., Zhu Z., Gao S., Zhang C., Li C., Zhou K., Hou W., Yu H. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: Effect of microvibration and role of erk1/2 activation. Eur. Cells Mater. 2011;22:12–25. doi: 10.22203/eCM.v022a02.
    1. Zhang C., Li J., Zhang L., Zhou Y., Hou W., Quan H., Li X., Chen Y., Yu H. Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch. Oral Biol. 2012;57:1395–1407. doi: 10.1016/j.archoralbio.2012.04.010.
    1. Prè D., Ceccarelli G., Visai L., Benedetti L., Imbriani M., Cusella De Angelis M.G., Magenes G. High-frequency vibration treatment of human bone marrow stromal cells increases differentiation toward bone tissue. Bone Marrow Res. 2013;2013:803450. doi: 10.1155/2013/803450.
    1. Marie P.J. Transcription factors controlling osteoblastogenesis. Arch. Biochem. Biophys. 2008;473:98–105. doi: 10.1016/j.abb.2008.02.030.
    1. Nakashima K., De Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet. 2003;19:458–466. doi: 10.1016/S0168-9525(03)00176-8.
    1. Owen T.A., Aronow M., Shalhoub V., Barone L.M., Wilming L., Tassinari M.S., Kennedy M.B., Pockwinse S., Lian J.B., Stein G.S. Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 1990;143:420–430. doi: 10.1002/jcp.1041430304.
    1. Komori T. Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem. 2006;99:1233–1239. doi: 10.1002/jcb.20958.
    1. Karsenty G., Wagner E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 2002;2:389–406. doi: 10.1016/S1534-5807(02)00157-0.
    1. Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson R.T., Gao Y.H., Inada M., et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–764. doi: 10.1016/S0092-8674(00)80258-5.
    1. Uzer G., Pongkitwitoon S., Ete Chan M., Judex S. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J. Biomech. 2013;46:2296–2302. doi: 10.1016/j.jbiomech.2013.06.008.
    1. Lu Y., Zhao Q., Liu Y., Zhang L., Li D., Zhu Z., Gan X., Yu H. Vibration loading promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells via p38 MAPK signaling pathway. J. Biomech. 2018;71:67–75. doi: 10.1016/j.jbiomech.2018.01.039.
    1. Wu J., Wu Y., Chen X., Zhi W. Early stage mechanical adaptability and osteogenic differentiation of mouse bone marrow derived mesenchymal stem cell under micro-vibration stimulation environment. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020;37:96–104.
    1. Winslow M.M., Pan M., Starbuck M., Gallo E.M., Deng L., Karsenty G., Crabtree G.R. Calcineurin/NFAT Signaling in Osteoblasts Regulates Bone Mass. Dev. Cell. 2006;10:771–782. doi: 10.1016/j.devcel.2006.04.006.
    1. Robinson J.A., Chatterjee-Kishore M., Yaworsky P.J., Cullen D.M., Zhao W., Li C., Kharode Y., Sauter L., Babij P., Brown E.L., et al. Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. J. Biol. Chem. 2006;281:31720–31728. doi: 10.1016/S0021-9258(19)84086-3.
    1. Hou W.W., Zhu Z.L., Zhou Y., Zhang C.X., Yu H.Y. Involvement of Wnt activation in the micromechanical vibration-enhanced osteogenic response of osteoblasts. J. Orthop. Sci. 2011;16:598–605. doi: 10.1007/s00776-011-0124-5.
    1. Rodríguez-Carballo E., Gámez B., Ventura F. p38 MAPK signaling in osteoblast differentiation. Front. Cell Dev. Biol. 2016;4:40. doi: 10.3389/fcell.2016.00040.
    1. Dougall W.C. Molecular pathways: Osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin. Cancer Res. 2012;18:326–335. doi: 10.1158/1078-0432.CCR-10-2507.
    1. Kulkarni R.N., Voglewede P.A., Liu D. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells. Bone. 2013;57:493–498. doi: 10.1016/j.bone.2013.08.020.
    1. Wu S.H., Zhong Z.M., Chen J.T. Low-magnitude high-frequency vibration inhibits RANKL-induced osteoclast differentiation of RAW264.7 cells. Int. J. Med. Sci. 2012;9:801–807. doi: 10.7150/ijms.4838.
    1. Sun C., Zhao W., He S., Fang X., Mi L., DU G., Zhang L., Sun X. Patterns of osteoprotegerin or nuclear factor kappa B ligand gene expression in the treatment of bone defect with bone marrow stem cell transplantation and low-frequency vibration. Zhonghua Yi Xue Za Zhi. 2011;91:920–924.
    1. Kim I.S., Song Y.M., Lee B., Hwang S.J. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli. J. Dent. Res. 2012;91:1135–1140. doi: 10.1177/0022034512465291.
    1. Puleo D.A., Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–2321. doi: 10.1016/S0142-9612(99)00160-X.
    1. Olivares-Navarrete R., Hyzy S.L., Hutton D.L., Erdman C.P., Wieland M., Boyan B.D., Schwartz Z. Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials. 2010;31:2728–2735. doi: 10.1016/j.biomaterials.2009.12.029.
    1. Dumas V., Ducharne B., Perrier A., Fournier C., Guignandon A., Thomas M., Peyroche S., Guyomar D., Vico L., Rattner A. Extracellular matrix produced by osteoblasts cultured under low-magnitude, high-frequency stimulation is favourable to osteogenic differentiation of mesenchymal stem cells. Calcif. Tissue Int. 2010;87:351–364. doi: 10.1007/s00223-010-9394-8.
    1. Di Palma F., Chamson A., Lafage-Proust M.H., Jouffray P., Sabido O., Peyroche S., Vico L., Rattner A. Physiological strains remodel extracellular matrix and cell-cell adhesion in osteoblastic cells cultured on alumina-coated titanium alloy. Biomaterials. 2004;25:2565–2575. doi: 10.1016/j.biomaterials.2003.09.026.
    1. Sato K., Adachi T., Matsuo M., Tomita Y. Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells. J. Biomech. 2005;38:1895–1901. doi: 10.1016/j.jbiomech.2004.08.012.
    1. Carvalho R.S., Elliot Scott J., Yen E.H.K. The effects of mechanical stimulation on the distribution of β1 integrin and expression of β1-integrin mRNA in TE-85 human osteosarcoma cells. Arch. Oral Biol. 1995;40:257–264. doi: 10.1016/0003-9969(95)98814-F.
    1. Kular J., Tickner J., Chim S.M., Xu J. An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 2012;45:863–873. doi: 10.1016/j.clinbiochem.2012.03.021.
    1. Lau E., Al-Dujaili S., Guenther A., Liu D., Wang L., You L. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone. 2010;46:1508–1515. doi: 10.1016/j.bone.2010.02.031.
    1. Rubin C.T., Sommerfeldt D.W., Judex S., Qin Y.X. Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli. Drug Discov. Today. 2001;6:848–858. doi: 10.1016/S1359-6446(01)01872-4.
    1. Bacabac R.G., Smit T.H., Van Loon J.J.W.A., Doulabi B.Z., Helder M., Klein-Nulend J. Bone cell responses to high-frequency vibration stress: Does the nucleus oscillate within the cytoplasm? FASEB J. 2006;20:858–864. doi: 10.1096/.
    1. Mancini L., Moradi-Bidhendi N., Brandi M.L., MacIntyre I. Nitric oxide superoxide and peroxynitrite modulate osteoclast activity. Biochem. Biophys. Res. Commun. 1998;243:785–790. doi: 10.1006/bbrc.1998.8175.
    1. Jing D., Luo E., Cai J., Tong S., Zhai M., Shen G., Wang X., Luo Z. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption. J. Bone Miner. Res. 2016;31:1713–1724. doi: 10.1002/jbmr.2837.
    1. Li M., Wu W., Tan L., Mu D., Zhu D., Wang J., Zhao B. Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats. Biochem. Biophys. Res. Commun. 2015;465:344–348. doi: 10.1016/j.bbrc.2015.07.154.
    1. Sun T., Yan Z., Cai J., Shao X., Wang D., Ding Y., Feng Y., Yang J., Luo E., Feng X., et al. Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. Cell Biol. Int. 2020;44:216–228. doi: 10.1002/cbin.11221.
    1. Tanaka S.M., Li J., Duncan R.L., Yokota H., Burr D.B., Turner C.H. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 2003;36:73–80. doi: 10.1016/S0021-9290(02)00245-2.
    1. Chung S.L., Leung K.S., Cheung W.H. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats. J. Orthop. Res. 2014;32:1572–1579. doi: 10.1002/jor.22715.
    1. Yokoi H., Take Y., Uchida R., Magome T., Shimomura K., Mae T., Okamoto T., Hanai T., Chong Y., Sato S., et al. Vibration acceleration promotes endochondral formation during fracture healing through cellular chondrogenic differentiation. PLoS ONE. 2020;15:e0229127. doi: 10.1371/journal.pone.0229127.
    1. Wehrle E., Liedert A., Heilmann A., Wehner T., Bindl R., Fischer L., Haffner-Luntzer M., Jakob F., Schinke T., Amling M., et al. The impact of low-magnitude high-frequency vibration on Fracture healing is profoundly influenced by the oestrogen status in mice. DMM Dis. Model. Mech. 2015;8:93–104. doi: 10.1242/dmm.018622.
    1. Donahue S.W., Jacobs C.R., Donahue H.J. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am. J. Physiol. Cell Physiol. 2001;281 doi: 10.1152/ajpcell.2001.281.5.C1635.
    1. Li Y.H., Zhu D., Cao Z., Liu Y., Sun J., Tan L. Primary cilia respond to intermittent low-magnitude, high-frequency vibration and mediate vibration-induced effects in osteoblasts. Am. J. Physiol. Cell Physiol. 2020;318:C73–C82. doi: 10.1152/ajpcell.00273.2019.
    1. Pravitharangul A., Suttapreyasri S., Leethanakul C. Iliac and mandible osteoblasts exhibit varied responses to LMHF vibration. Cell Biol. Int. 2018;42:1349–1357. doi: 10.1002/cbin.11019.
    1. Rubin C.T., Recker R., Cullen D., Ryaby J., McCabe J., McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: A clinical trial assessing compliance, efficacy, and safety. J. Bone Miner. Res. 2004;19:343–351. doi: 10.1359/JBMR.0301251.
    1. Komrakova M., Sehmisch S., Tezval M., Ammon J., Lieberwirth P., Sauerhoff C., Trautmann L., Wicke M., Dullin C., Stuermer K.M., et al. Identification of a vibration regime favorable for bone healing and muscle in estrogen-deficient rats. Calcif. Tissue Int. 2013;92:509–520. doi: 10.1007/s00223-013-9706-x.
    1. Haffner-Luntzer M., Lackner I., Liedert A., Fischer V., Ignatius A. Effects of low-magnitude high-frequency vibration on osteoblasts are dependent on estrogen receptor α signaling and cytoskeletal remodeling. Biochem. Biophys. Res. Commun. 2018;503:2678–2684. doi: 10.1016/j.bbrc.2018.08.023.
    1. ElDeeb A.M., Abdel-Aziem A.A. Effect of Whole-Body Vibration Exercise on Power Profile and Bone Mineral Density in Postmenopausal Women with Osteoporosis: A Randomized Controlled Trial. J. Manip. Physiol. Ther. 2020;43:384–393. doi: 10.1016/j.jmpt.2019.12.003.
    1. Verschueren S.M., Roelants M., Delecluse C., Swinnen S., Vanderschueren D., Boonen S. Effect of 6-Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A Randomized Controlled Pilot Study. J. Bone Miner. Res. 2003;19:352–359. doi: 10.1359/JBMR.0301245.
    1. Turner S., Torode M., Climstein M., Naughton G., Greene D., Baker M.K., Fiatarone Singh M.A. A Randomized Controlled Trial of Whole Body Vibration Exposure on Markers of Bone Turnover in Postmenopausal Women. J. Osteoporos. 2011;2011:710387. doi: 10.4061/2011/710387.
    1. Matute-Llorente A., González-Agüero A., Gómez-Cabello A., Olmedillas H., Vicente-Rodríguez G., Casajús J.A. Effect of whole body vibration training on bone mineral density and bone quality in adolescents with Down syndrome: A randomized controlled trial. Osteoporos. Int. 2015;26:2449–2459. doi: 10.1007/s00198-015-3159-1.
    1. Ward K., Alsop C., Caulton J., Rubin C., Adams J., Mughal Z. Low Magnitude Mechanical Loading Is Osteogenic in Children With Disabling Conditions. J. Bone Miner. Res. 2004;19:360–369. doi: 10.1359/JBMR.040129.
    1. Griffin M.J. Predicting the hazards of whole-body vibration-Considerations of a standard. Ind. Health. 1998;36:83–91. doi: 10.2486/indhealth.36.83.
    1. Baliga S., Treon K., Craig N.J.A. Low back pain: Current surgical approaches. Asian Spine J. 2015;9:645–657. doi: 10.4184/asj.2015.9.4.645.
    1. Desmoulin G.T., Enns-Bray W.S., Hewitt C.R., Hunter C.J. Multi-unit sustained vibration loading platform for biological tissues: Design, validation and experimentation. J. Biomech. 2013;46:116–121. doi: 10.1016/j.jbiomech.2012.10.018.
    1. Desmoulin G.T., Hewitt C.R., Hunter C.J. Disc strain and resulting positive mRNA expression from application of a noninvasive treatment. Spine. 2011;36:E921–E928. doi: 10.1097/BRS.0b013e3181fd78b3.
    1. Desmoulin G.T., Reno C.R., Hunter C.J. Free axial vibrations at 0 to 200 Hz positively affect extracellular matrix messenger ribonucleic acid expression in bovine nucleus pulposi. Spine. 2010;35:1437–1444. doi: 10.1097/BRS.0b013e3181c2a8ec.
    1. McCann M.R., Patel P., Beaucage K.L., Xiao Y., Bacher C., Siqueira W.L., Holdsworth D.W., Dixon S.J., Séguin C.A. Acute vibration induces transient expression of anabolic genes in the Murine intervertebral disc. Arthritis Rheum. 2013;65:1853–1864. doi: 10.1002/art.37979.
    1. Liang X., Shen H., Shi W.D., Ren S., Jiang W., Liu H., Yang P., Sun Z.Y., Lin J., Yang H.L. Effect of axial vertical vibration on degeneration of lumbar intervertebral discs in modified bipedal rats: An in-vivo study. Asian Pac. J. Trop. Med. 2017;10:714–717. doi: 10.1016/j.apjtm.2017.07.014.
    1. Freemont A.J. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology. 2008;48:5–10. doi: 10.1093/rheumatology/ken396.
    1. Esmaeili M., Berry M., Logan A., Ahmed Z. Decorin treatment of spinal cord injury. Neural Regen. Res. 2014;9:1653–1656.
    1. Fardon D.F., Milette P.C. Combined Task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology Nomenclature and Classification of Lumbar Disc Pathology. Spine. 2001;26:E93–E113. doi: 10.1097/00007632-200103010-00006.
    1. Solovieva S., Lohiniva J., Leino-Arjas P., Raininko R., Luoma K., Ala-Kokko L., Riihimäki H. COL9A3 Gene Polymorphism and Obesity in Intervertebral Disc Degeneration of the Lumbar Spine: Evidence of Gene-Environment Interaction. Spine. 2002;27:2691–2696. doi: 10.1097/00007632-200212010-00008.
    1. Videman T., Battié M.C., Gill K., Manninen H., Gibbons L.E., Fisher L.D. Magnetic Resonance Imaging Findings and Their Relationships in the Thoracic and Lumbar Spine. Spine. 1995;20:928–935. doi: 10.1097/00007632-199504150-00009.
    1. Brown M.F., Hukkanen M.V., McCarthy I.D., Redfern D.R., Batten J.J., Crock H.V., Hughes S.P., Polak J.M. Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J. Bone Jt. Surg. Br. 1997;79:147–153. doi: 10.1302/0301-620X.79B1.0790147.
    1. Burke J.G., Watson R.W.G., McCormack D., Dowling F.E., Walsh M.G., Fitzpatrick J.M. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J. Bone Jt. Surg. Br. 2002;84:196–201. doi: 10.1302/0301-620X.84B2.0840196.
    1. Risbud M.V., Shapiro I.M. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat. Rev. Rheumatol. 2014;10:44–56. doi: 10.1038/nrrheum.2013.160.
    1. Tardy-Gervet M.F., Guieu R., Ribot-Ciscar E., Roll J. Transcutaneous mechanical vibrations: Analgesic effect and antinociceptive mechanisms. Rev. Neurol. 1993;149:177–185.
    1. Desmoulin G.T., Yasin N.I., Chen D.W. Spinal mechanisms of pain control. Clin. J. Pain. 2007;23:576–585. doi: 10.1097/AJP.0b013e3180e00eb8.
    1. Keller T.S., Colloca C.J., Fuhr A.W. In vivo transient vibration assessment of the normal human thoracolumbar spine. J. Manip. Physiol. Ther. 2000;23:521–530. doi: 10.1067/mmt.2000.109680.
    1. Smith A., O’Sullivan P., Straker L. Classification of Sagittal Thoraco-Lumbo-Pelvic Alignment of the Adolescent Spine in Standing and Its Relationship to Low Back Pain. Spine. 2008;33:2101–2107. doi: 10.1097/BRS.0b013e31817ec3b0.
    1. Lim E., Lim R., Suhaimi A., Chan B.T., Wahab A.K.A. Treatment of chronic back pain using indirect vibroacoustic therapy: A pilot study. J. Back Musculoskelet. Rehabil. 2018;31:1041–1047. doi: 10.3233/BMR-171042.

Source: PubMed

3
Abonnere