Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke: study protocol for a randomized controlled trial

Emma Ghaziani, Christian Couppé, Cecilie Henkel, Volkert Siersma, Mette Søndergaard, Hanne Christensen, S Peter Magnusson, Emma Ghaziani, Christian Couppé, Cecilie Henkel, Volkert Siersma, Mette Søndergaard, Hanne Christensen, S Peter Magnusson

Abstract

Background: Upper limb paresis is one of the most frequent and persistent impairments following stroke. Only 12-34% of stroke patients achieve full recovery of upper limb functioning, which seems to be required to habitually use the affected arm in daily tasks. Although the recovery of upper limb functioning is most pronounced during the first 4 weeks post stroke, there are few studies investigating the effect of rehabilitation during this critical time window. The purpose of this trial is to determine the effect of electrical somatosensory stimulation (ESS) initiated in the acute stroke phase on the recovery of upper limb functioning in a nonselected sample of stroke patients.

Methods/design: A sample of 102 patients with upper limb paresis of varying degrees of severity is assigned to either the intervention or the control group using stratified random sampling. The intervention group receives ESS plus usual rehabilitation and the control group receives sham ESS plus usual rehabilitation. The intervention is applied as 1 h of ESS/sham ESS daily, followed by motor training of the affected upper limb. The ESS/sham ESS treatment is initiated within 7 days from stroke onset and it is delivered during hospitalization, but no longer than 4 weeks post stroke. The primary outcome is hand dexterity assessed by the Box and Block Test; secondary outcomes are the Fugl-Meyer Assessment, hand grip strength, pinch strength, perceptual threshold of touch, degree of pain, and modified Rankin Scale score. Outcome measurements are conducted at baseline, post intervention and at 6-month follow-up.

Discussion: Because of the wide inclusion criteria, we believe that the results can be generalized to the larger population of patients with a first-ever stroke who present with an upper limb paresis of varying severity. On the other hand, the sample size (n = 102) may preclude subgroup analyses in such a heterogeneous sample. The sham ESS treatment totals a mere 2% of the active ESS treatment delivered to the intervention group per ESS session, and we consider that this dose is too small to induce a treatment effect.

Trial registration: ClinicalTrials.gov, NCT02250365 . Registered on 18 September 2014.

Keywords: Acute stroke; Electrical stimulation; Longitudinal studies; Recovery of function; Rehabilitation; Upper extremity.

Figures

Fig. 1
Fig. 1
SPIRIT flow diagram of the trial
Fig. 2
Fig. 2
Placement of the electrodes

References

    1. Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A, Abd-Allah F, Abera SF, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. doi: 10.1016/S0140-6736(15)61340-X.
    1. Camak DJ. Addressing the burden of stroke caregivers: a literature review. J Clin Nurs. 2015;24(17–18):2376–82. doi: 10.1111/jocn.12884.
    1. Jennum P, Iversen HK, Ibsen R, Kjellberg J. Cost of stroke: a controlled national study evaluating societal effects on patients and their partners. BMC Health Serv Res. 2015;15:466. doi: 10.1186/s12913-015-1100-0.
    1. Feigin VL, Barker-Collo S, McNaughton H, Brown P, Kerse N. Long-term neuropsychological and functional outcomes in stroke survivors: current evidence and perspectives for new research. Int J Stroke. 2008;3(1):33–40. doi: 10.1111/j.1747-4949.2008.00177.x.
    1. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–8. doi: 10.1016/0003-9993(94)90161-9.
    1. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32(6):1279–84. doi: 10.1161/01.STR.32.6.1279.
    1. Persson HC, Parziali M, Danielsson A, Sunnerhagen KS. Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit. A part of the SALGOT study. BMC Neurol. 2012;12:162. doi: 10.1186/1471-2377-12-162.
    1. Sveen U, Bautz-Holter E, Sodring KM, Wyller TB, Laake K. Association between impairments, self-care ability and social activities 1 year after stroke. Disabil Rehabil. 1999;21(8):372–7. doi: 10.1080/096382899297477.
    1. Nijland RH, van Wegen EE. Harmeling-van der Wel BC, Kwakkel G. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke. 2010;41(4):745–50. doi: 10.1161/STROKEAHA.109.572065.
    1. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6. doi: 10.1161/.
    1. Fleming MK, Newham DJ, Roberts-Lewis SF, Sorinola IO. Self-perceived utilization of the paretic arm in chronic stroke requires high upper limb functional ability. Arch Phys Med Rehabil. 2014;95(5):918–24. doi: 10.1016/j.apmr.2014.01.009.
    1. Wade DT, Langton-Hewer R, Wood VA, Skilbeck CE, Ismail HM. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry. 1983;46(6):521–4. doi: 10.1136/jnnp.46.6.521.
    1. Verheyden G, Nieuwboer A, De Wit L, Thijs V, Dobbelaere J, Devos H, et al. Time course of trunk, arm, leg, and functional recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(2):173–9. doi: 10.1177/1545968307305456.
    1. Au-Yeung SS, Hui-Chan CW. Predicting recovery of dextrous hand function in acute stroke. Disabil Rehabil. 2009;31(5):394–401. doi: 10.1080/09638280802061878.
    1. Popovic DB, Sinkaer T, Popovic MB. Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabilitation. 2009;25(1):45–58.
    1. Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res. 2000;131(1):135–43. doi: 10.1007/s002219900269.
    1. Ridding MC, McKay DR, Thompson PD, Miles TS. Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol. 2001;112(8):1461–9. doi: 10.1016/S1388-2457(01)00592-2.
    1. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540(Pt 2):623–33. doi: 10.1113/jphysiol.2001.012801.
    1. McKay D, Brooker R, Giacomin P, Ridding M, Miles T. Time course of induction of increased human motor cortex excitability by nerve stimulation. Neuroreport. 2002;13(10):1271–3. doi: 10.1097/00001756-200207190-00011.
    1. Wu CW, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LG. Enduring representational plasticity after somatosensory stimulation. Neuroimage. 2005;27(4):872–84. doi: 10.1016/j.neuroimage.2005.05.055.
    1. Tinazzi M, Zarattini S, Valeriani M, Romito S, Farina S, Moretto G, et al. Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation. Exp Brain Res. 2005;161(4):457–64. doi: 10.1007/s00221-004-2091-y.
    1. Golaszewski SM, Siedentopf CM, Koppelstaetter F, Rhomberg P, Guendisch GM, Schlager A, et al. Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology. 2004;62(12):2262–9. doi: 10.1212/WNL.62.12.2262.
    1. Golaszewski SM, Bergmann J, Christova M, Nardone R, Kronbichler M, Rafolt D, et al. Increased motor cortical excitability after whole-hand electrical stimulation: a TMS study. Clin Neurophysiol. 2010;121(2):248–54. doi: 10.1016/j.clinph.2009.09.024.
    1. Dobkin BH. Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains? Curr Opin Neurol. 2003;16(6):685–91. doi: 10.1097/00019052-200312000-00007.
    1. Koesler IB, Dafotakis M, Ameli M, Fink GR, Nowak DA. Electrical somatosensory stimulation improves movement kinematics of the affected hand following stroke. J Neurol Neurosurg Psychiatry. 2009;80(6):614–9. doi: 10.1136/jnnp.2008.161117.
    1. Conforto AB, Kaelin-Lang A, Cohen LG. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol. 2002;51(1):122–5. doi: 10.1002/ana.10070.
    1. Sawaki L, Wu CW, Kaelin-Lang A, Cohen LG. Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke. 2006;37(1):246–7. doi: 10.1161/.
    1. Klaiput A, Kitisomprayoonkul W. Increased pinch strength in acute and subacute stroke patients after simultaneous median and ulnar sensory stimulation. Neurorehabil Neural Repair. 2009;23(4):351–6. doi: 10.1177/1545968308324227.
    1. Celnik P, Hummel F, Harris-Love M, Wolk R, Cohen LG. Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1369–76. doi: 10.1016/j.apmr.2007.08.001.
    1. Wu CW, Seo HJ, Cohen LG. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil. 2006;87(3):351–7. doi: 10.1016/j.apmr.2005.11.019.
    1. Conforto AB, Cohen LG, dos Santos RL, Scaff M, Marie SK. Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J Neurol. 2007;254(3):333–9. doi: 10.1007/s00415-006-0364-z.
    1. Conforto AB, Ferreiro KN, Tomasi C, dos Santos RL, Moreira VL, Marie SK, et al. Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair. 2010;24(3):263–72. doi: 10.1177/1545968309349946.
    1. Ikuno K, Kawaguchi S, Kitabeppu S, Kitaura M, Tokuhisa K, Morimoto S, et al. Effects of peripheral sensory nerve stimulation plus task-oriented training on upper extremity function in patients with subacute stroke: a pilot randomized crossover trial. Clin Rehabil. 2012;26(11):999–1009. doi: 10.1177/0269215512441476.
    1. Dos Santos-Fontes RL, de Ferreiro Andrade KN, Sterr A, Conforto AB. Home-based nerve stimulation to enhance effects of motor training in patients in the chronic phase after stroke: a proof-of-principle study. Neurorehabil Neural Repair. 2013;27(6):483–90. doi: 10.1177/1545968313478488.
    1. Laufer Y, Elboim-Gabyzon M. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair. 2011;25(9):799–809. doi: 10.1177/1545968310397205.
    1. Bispebjerg Hospital. About Bispebjerg Hospital. [cited 29 August 2016]. Available from: . Accessed 4 Nov 2016.
    1. Watson Te. Electrotherapy. Evidence-based practice. 12th ed.: Elsevier; 2008.
    1. Adams HP, Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41. doi: 10.1161/01.STR.24.1.35.
    1. Multicenter trial of hemodilution in ischemic stroke—background and study protocol. Scandinavian Stroke Study Group. Stroke. 1985;16(5):885–90
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91. doi: 10.5014/ajot.39.6.386.
    1. Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009;23(5):435–40. doi: 10.1177/1545968308331146.
    1. Fugl-Meyer AR. Post-stroke hemiplegia assessment of physical properties. Scand J Rehabil Med Suppl. 1980;7:85–93.
    1. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer Assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40. doi: 10.1177/154596802401105171.
    1. Arya KN, Verma R, Garg RK. Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. Top Stroke Rehabil. 2011;18(Suppl 1):599–610. doi: 10.1310/tsr18s01-599.
    1. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg [Am] 1984;9(2):222–6. doi: 10.1016/S0363-5023(84)80146-X.
    1. Eek E, Engardt M. Assessment of the perceptual threshold of touch (PTT) with high-frequency transcutaneous electric nerve stimulation (Hf/TENS) in elderly patients with stroke: a reliability study. Clin Rehabil. 2003;17(8):825–34.
    1. Eek E, Holmqvist LW, Sommerfeld DK. Adult norms of the perceptual threshold of touch (PTT) in the hands and feet in relation to age, gender, and right and left side using transcutaneous electrical nerve stimulation. Physiother Theory Pract. 2012;28(5):373–83. doi: 10.3109/09593985.2011.629021.
    1. Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH, et al. Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manage. 2011;41(6):1073–93. doi: 10.1016/j.jpainsymman.2010.08.016.
    1. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke. 2007;38(3):1091–6. doi: 10.1161/01.STR.0000258355.23810.c6.
    1. Bruno A, Shah N, Lin C, Close B, Hess DC, Davis K, et al. Improving modified Rankin Scale assessment with a simplified questionnaire. Stroke. 2010;41(5):1048–50. doi: 10.1161/STROKEAHA.109.571562.
    1. University of California, San Francisco. Power and sample size programmes. [cited 28 September 2016]. Available from: . Accessed 4 Nov 2016.
    1. Langagergaard V, Palnum KH, Mehnert F, Ingeman A, Krogh BR, Bartels P, et al. Socioeconomic differences in quality of care and clinical outcome after stroke: a nationwide population-based study. Stroke. 2011;42(10):2896–902. doi: 10.1161/STROKEAHA.110.611871.
    1. Kirkwood BR SJ. Essential medical statistics. 2nd ed.: Blackwell Science; 2003.
    1. Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke. 2007;38(3):1088–90. doi: 10.1161/01.STR.0000258077.88064.a3.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.

Source: PubMed

3
Abonnere