Intranasal administration of oxytocin: behavioral and clinical effects, a review

Jan G Veening, Berend Olivier, Jan G Veening, Berend Olivier

Abstract

The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. 'Direct-access-pathways' from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral 'prosocial' effects: from social relations and 'trust' to treatment of 'autism'. Only very recently in a microdialysis study in rats and mice, the 'direct-nose-brain-pathways' of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the 'intrinsic' OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.

Keywords: Behavioral effects; Clinical effects; Intranasal administration; Oxytocin.

Copyright © 2013 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
The figure shows a midsagittal section of the rat brain (kindly provided by Prof. L.W.Swanson), with the fiber bundles, crossing the midline, indicated in black. The orange arrows indicate the flow of oxytocin (OT) from the natural hypothalamic sources: the paraventricular hypothalamic nucleus (PVN) and the supraoptic nucleus (SON). After (dendritic) release OT follows the flow of the cerebrospinal fluid (CSF) through the ventricular system and along the external surface of the brain. Eventually, more than 50% of the ‘central’ OT is leaving the cranial cavity along the olfactory fibers, through the cribriform plate into the nose lymphatics. The blue arrows suggest the entrance of intranasally applied OT (in-OT), entering the cranial cavity and the CSF along the olfactory fibers but possibly also by following the trigeminal nerve. The scheme is based on assumptions obtained from other neuropeptide studies (like Thorne et al., 2004), since the entrance and distribution of in-OT itself has never been studied, yet. The arrows suggest a rostral to caudal distribution through the brain and CSF from the rostral entrance, supported by the OT entering the brainstem along the trigeminal fibers (but this entrance remains to be shown to be relevant for OT!). The more strongly ‘inundated’ parts of the brain appear to be the ventral parts and include the hypothalamus and amygdaloid regions. For further details, see text, and Veening et al. (2010) and Veening and Barendregt (2010). The numbers 1–5 indicate OT-receptive brain areas, containing OT-receptors.

References

    1. Abbott N.J., Friedman A. Overview and introduction: The blood-brain barrier in health and disease. Epilepsia. 2012;53(Suppl. 6):1–6.
    1. Adkins-Regan E. Neuroendocrinology of social behavior. ILAR J. 2009;50:5–14.
    1. Agnati L.F., Bjelke B., Fuxe K. Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology. Med. Res. Rev. 1995;15:33–45.
    1. Agnati L.F., Cortelli P., Biagini G., Bjelke B., Fuxe K. Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. Neuroreport. 1994;6:9–12.
    1. Agnati L.F., Fuxe K. Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing's B-type machine. Prog. Brain Res. 2000;125:3–19.
    1. Agnati L.F., Guidolin D., Guescini M., Genedani S., Fuxe K. Understanding wiring and volume transmission. Brain Res. Rev. 2010;64:137–159.
    1. Alcalay R.N., Giladi E., Pick C.G., Gozes I. Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci. Lett. 2004;361:128–131.
    1. Alonso G., Szafarczyk A., Assenmacher I. Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extrahypothalamic brain regions. Neurosci. Lett. 1986;66:251–256.
    1. Alvares G.A., Hickie I.B., Guastella A.J. Acute effects of intranasal oxytocin on subjective and behavioral responses to social rejection. Exp. Clin. Psychopharmacol. 2010;18:316–321.
    1. Amico J.A., Challinor S.M., Cameron J.L. Pattern of oxytocin concentrations in the plasma and cerebrospinal fluid of lactating rhesus monkeys (Macaca mulatta): evidence for functionally independent oxytocinergic pathways in primates. J. Clin. Endocrinol. Metab. 1990;71:1531–1535.
    1. Andari E., Duhamel J.R., Zalla T., Herbrecht E., Leboyer M., Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl. Acad. Sci. U. S. A. 2010;107:4389–4394.
    1. Andreasson B., Bock J.E., Larsen J. Induction of labor. A double-blind randomized controlled study of prostaglandin E2 vaginal suppositories compared with intranasal oxytocin and with sequential treatment. Acta Obstet. Gynecol. Scand. 1985;64:157–161.
    1. Ansseau M., Legros J.J., Mormont C., Cerfontaine J.L., Papart P., Geenen V., Adam F., Franck G. Intranasal oxytocin in obsessive-compulsive disorder. Psychoneuroendocrinology. 1987;12:231–236.
    1. Arakawa H., Arakawa K., Deak T. Oxytocin and vasopressin in the medial amygdala differentially modulate approach and avoidance behavior toward illness-related social odor. Neuroscience. 2010;171:1141–1151.
    1. Armstrong W.E., Hatton G.I. The puzzle of pulsatile oxytocin secretion during lactation: some new pieces. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:R26–R28.
    1. Armstrong W.E., Wang L., Li C., Teruyama R. Performance, properties and plasticity of identified oxytocin and vasopressin neurones in vitro. J. Neuroendocrinol. 2010;22:330–342.
    1. Armstrong W.E., Warach S., Hatton G.I., McNeill T.H. Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase and immunocytochemical analysis. Neuroscience. 1980;5:1931–1958.
    1. Baker H., Spencer R.F. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp. Brain Res. 1986;63:461–473.
    1. Baker M.A. Brain cooling in endotherms in heat and exercise. Annu. Rev. Physiol. 1982;44:85–96.
    1. Baker M.A. Invited editorial on “Selective brain cooling in the horse during exercise and environmental heat stress”. J. Appl. Physiol. 1995;79:1847–1848.
    1. Bale T.L., Davis A.M., Auger A.P., Dorsa D.M., McCarthy M.M. CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J. Neurosci. 2001;21:2546–2552.
    1. Bale T.L., Dorsa D.M., Johnston C.A. Oxytocin receptor mRNA expression in the ventromedial hypothalamus during the estrous cycle. J. Neurosci. Off. J. Soc. Neurosci. 1995;15:5058–5064.
    1. Bales K.L., Perkeybile A.M., Conley O.G., Lee M.H., Guoynes C.D., Downing G.M., Yun C.R., Solomon M., Jacob S., Mendoza S.P. Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biol. Psychiatry. 2012
    1. Banks W.A. The CNS as a target for peptides and peptide-based drugs. Exp. Opin. Drug Deliv. 2006;3:707–712.
    1. Banks W.A. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology. 2012;153:4111–4119.
    1. Banks W.A., Morley J.E., Niehoff M.L., Mattern C. Delivery of testosterone to the brain by intranasal administration: comparison to intravenous testosterone. J. Drug Target. 2009;17:91–97.
    1. Barnett E.M., Perlman S. The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology. 1993;194:185–191.
    1. Barthold S.W. Olfactory neural pathway in mouse hepatitis virus nasoencephalitis. Acta Neuropathol. 1988;76:502–506.
    1. Bartz J.A., Zaki J., Bolger N., Hollander E., Ludwig N.N., Kolevzon A., Ochsner K.N. Oxytocin selectively improves empathic accuracy. Psychol. Sci. 2010;21:1426–1428.
    1. Bartz J.A., Zaki J., Ochsner K.N., Bolger N., Kolevzon A., Ludwig N., Lydon J.E. Effects of oxytocin on recollections of maternal care and closeness. Proc. Natl. Acad. Sci. U. S. A. 2010;107:21371–21375.
    1. Baumgartner T., Heinrichs M., Vonlanthen A., Fischbacher U., Fehr E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron. 2008;58:639–650.
    1. Beetz A., Uvnas-Moberg K., Julius H., Kotrschal K. Psychosocial and psychophysiological effects of human-animal interactions: the possible role of oxytocin. Front. Psychol. 2012;3:234.
    1. Belin V., Moos F. Paired recordings from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization. J. Physiol. 1986;377:369–390.
    1. Belin V., Moos F., Richard P. Synchronization of oxytocin cells in the hypothalamic paraventricular and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings. Exp. Brain Res. Experimentelle Hirnforschung. Experimentation cerebrale. 1984;57:201–203.
    1. Benarroch E.E. Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology. 2011;77:1198–1204.
    1. Bennett L., Yang M., Enikolopov G., Iacovitti L. Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol. Cell Neurosci. 2009;41:337–347.
    1. Berezowski V., Fukuda A.M., Cecchelli R., Badaut J. Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology. Int. J. Cell Biol. 2012;2012:176–287.
    1. Biag J., Huang Y., Gou L., Hintiryan H., Askarinam A., Hahn J.D., Toga A.W., Dong H.W. Cyto- and chemoarchitecture of the hypothalamic paraventricular nucleus in the C57BL/6J male mouse: a study of immunostaining and multiple fluorescent tract tracing. J. Comp. Neurol. 2012;520(1):6–33.
    1. Blanks A.M., Shmygol A., Thornton S. Regulation of oxytocin receptors and oxytocin receptor signaling. Semin. Reprod. Med. 2007;25:52–59.
    1. Blume A., Bosch O.J., Miklos S., Torner L., Wales L., Waldherr M., Neumann I.D. Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur. J. Neurosci. 2008;27:1947–1956.
    1. Bodineau L., Taveau C., Le Quan Sang H.H., Osterstock G., Queguiner I., Moos F., Frugiere A., Llorens-Cortes C. Data supporting a new physiological role for brain apelin in the regulation of hypothalamic oxytocin neurons in lactating rats. Endocrinology. 2011;152:3492–3503.
    1. Bonaiuto J., Arbib M.A. Extending the mirror neuron system model. II: what did I just do? A new role for mirror neurons. Biol. Cybern. 2010;102:341–359.
    1. Bora E., Yucel M., Allen N.B. Neurobiology of human affiliative behaviour: implications for psychiatric disorders. Curr. Opin. Psychiatry. 2009;22:320–325.
    1. Borglin N.E. Intranasal administration of oxytocin for induction and stimulation of labour. Acta Obstet. Gynecol. Scand. 1962;41:238–253.
    1. Born J., Lange T., Kern W., McGregor G.P., Bickel U., Fehm H.L. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 2002;5:514–516.
    1. Borrow A.P., Cameron N.M. The role of oxytocin in mating and pregnancy. Horm. Behav. 2012;61:266–276.
    1. Bortolozzi A., Castane A., Semakova J., Santana N., Alvarado G., Cortes R., Ferres-Coy A., Fernandez G., Carmona M.C., Toth M., Perales J.C., Montefeltro A., Artigas F. Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Mol. Psychiatry. 2012;17(6):612–623.
    1. Bos P.A., Panksepp J., Bluthe R.M., Honk J. Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: A review of single administration studies. Front. Neuroendocrinol. 2012;33:17–35.
    1. Bovetti S., Hsieh Y.C., Bovolin P., Perroteau I., Kazunori T., Puche A.C. Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J. Neurosci. 2007;27:5976–5980.
    1. Bradbury M.W., Westrop R.J. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J. Physiol. 1983;339:519–534.
    1. Brang D., Ramachandran V.S. Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism. Med. Hypotheses. 2010;74:919–921.
    1. Buijs R.M. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 1978;192:423–435.
    1. Buijs R.M. Vasopressin and oxytocin localization and putative functions in the brain. Acta Neurochir. Suppl. (Wien) 1990;47:86–89.
    1. Buijs R.M., De Vries G.J., Van Leeuwen F.W., Swaab D.F. Vasopressin and oxytocin: distribution and putative functions in the brain. Prog. Brain Res. 1983;60:115–122.
    1. Burbach J.P., De Hoop M.J., Schmale H., Richter D., De Kloet E.R., Ten Haaf J.A., De Wied D. Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei. Neuroendocrinology. 1984;39:582–584.
    1. Burbach J.P., Loeber J.G., Verhoef J., de Kloet E.R., van Ree J.M., de Wied D. Schizophrenia and degradation of endorphins in cerebrospinal fluid. Lancet. 1979;2:480–481.
    1. Burger K., Gimpl G., Fahrenholz F. Regulation of receptor function by cholesterol. Cell. Mol. Life Sci.: CMLS. 2000;57:1577–1592.
    1. Burri A., Heinrichs M., Schedlowski M., Kruger T.H. The acute effects of intranasal oxytocin administration on endocrine and sexual function in males. Psychoneuroendocrinology. 2008;33:591–600.
    1. Campbell P., Ophir A.G., Phelps S.M. Central vasopressin and oxytocin receptor distributions in two species of singing mice. J. Comp. Neurol. 2009;516:321–333.
    1. Carnes J., Robinson D.S. New strategies for allergen immunotherapy. Recent Patents Inflamm. Allergy Drug Discov. 2008;2:92–101.
    1. Carroll E.J., Jacobsen M.S., Kassouny M., Smith N.E., Armstrong D.T. An inhibitory effect of oxytocin on the milk-ejection reflex. Endocrinology. 1968;82:179–182.
    1. Carter C.S., Boone E.M., Pournajafi-Nazarloo H., Bales K.L. Consequences of early experiences and exposure to oxytocin and vasopressin are sexually dimorphic. Dev. Neurosci. 2009;31:332–341.
    1. Chang S.W.C., Barter J.W., Ebitz R.B., Watson K.K., Platt M.L. Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta) Proc. Natl. Acad. Sci. U. S. A. 2012;109(3):959–964.
    1. Charlton S.T., Davis S.S., Illum L. Evaluation of effect of ephedrine on the transport of drugs from the nasal cavity to the systemic circulation and the central nervous system. J. Drug Target. 2007;15:370–377.
    1. Charlton S.T., Davis S.S., Illum L. Nasal administration of an angiotensin antagonist in the rat model: effect of bioadhesive formulations on the distribution of drugs to the systemic and central nervous systems. Int. J. Pharm. 2007;338:94–103.
    1. Charlton S.T., Whetstone J., Fayinka S.T., Read K.D., Illum L., Davis S.S. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model. Pharm. Res. 2008;25:1531–1543.
    1. Chen J., Wang X., Wang J., Liu G., Tang X. Evaluation of brain-targeting for the nasal delivery of ergoloid mesylate by the microdialysis method in rats. Eur. J. Pharm. Biopharm. 2008;68:694–700.
    1. Churchland P.S., Winkielman P. Modulating social behavior with oxytocin: How does it work? What does it mean? Horm. Behav. 2012;61(3):392–399.
    1. Clancy A.N., Schoenfeld T.A., Forbes W.B., Macrides F. The spatial organization of the peripheral olfactory system of the hamster. Part II: Receptor surfaces and odorant passageways within the nasal cavity. Brain Res. Bull. 1994;34:211–241.
    1. Cochin S., Barthelemy C., Roux S., Martineau J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur. J. Neurosci. 1999;11:1839–1842.
    1. Cohen J., Danezis J., Burnhill M.S. Response of the gravid uterus at term to intranasal oxytocin as determined by intra-amniotic fluid pressure recordings. Am. J. Obstet. Gynecol. 1962;83:774–777.
    1. Coolen L.M., Hull E.M. Male sexual function. Physiol. Behav. 2004;83:175–176.
    1. Coolen L.M., Peters H.J., Veening J.G. Distribution of Fos immunoreactivity following mating versus anogenital investigation in the male rat brain. Neuroscience. 1997;77:1151–1161.
    1. Coolen L.M., Peters H.J., Veening J.G. Anatomical interrelationships of the medial preoptic area and other brain regions activated following male sexual behavior: a combined fos and tract-tracing study. J. Comp. Neurol. 1998;397:421–435.
    1. Costantino H.R., Illum L., Brandt G., Johnson P.H., Quay S.C. Intranasal delivery: physicochemical and therapeutic aspects. Int. J. Pharm. 2007;337:1–24.
    1. Covaciu L., Weis J., Bengtsson C., Allers M., Lunderquist A., Ahlstrom H., Rubertsson S. Brain temperature in volunteers subjected to intranasal cooling. Intens. Care Med. 2011;37:1277–1284.
    1. Cowley K.C. Psychogenic and pharmacologic induction of the let-down reflex can facilitate breastfeeding by tetraplegic women: a report of 3 cases. Arch Phys. Med. Rehabil. 2005;86:1261–1264.
    1. Craig A.D. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009;10:59–70.
    1. Crowley W.R., Armstrong W.E. Neurochemical regulation of oxytocin secretion in lactation. Endocr. Rev. 1992;13:33–65.
    1. D’Ausilio A. Mirror-like mechanisms and music. Sci. World J. 2009;9:1415–1422.
    1. Dale O., Hjortkjaer R., Kharasch E.D. Nasal administration of opioids for pain management in adults. Acta Anaesthesiol. Scand. 2002;46:759–770.
    1. Daneman R. The blood-brain barrier in health and disease. Ann. Neurol. 2012;72:648–672.
    1. Danielyan L., Schafer R., von Ameln-Mayerhofer A., Bernhard F., Verleysdonk S., Buadze M., Lourhmati A., Klopfer T., Schaumann F., Schmid B., Koehle C., Proksch B., Weissert R., Reichardt H.M., van den Brandt J., Buniatian G.H., Schwab M., Gleiter C.H., Frey W.H., 2nd Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuv. Res. 2011;14:3–16.
    1. Danielyan L., Schafer R., von Ameln-Mayerhofer A., Buadze M., Geisler J., Klopfer T., Burkhardt U., Proksch B., Verleysdonk S., Ayturan M., Buniatian G.H., Gleiter C.H., Frey W.H., 2nd Intranasal delivery of cells to the brain. Eur. J. Cell Biol. 2009;88:315–324.
    1. Dawood M.Y., Khan-Dawood F.S., Ayromlooi J., Tobias M. Maternal and fetal plasma oxytocin levels during pregnancy and parturition in the sheep. Am. J. Obstet. Gynecol. 1983;147:584–588.
    1. Dayas C.V., Buller K.M., Day T.A. Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Eur. J. Neurosci. 1999;11:2312–2322.
    1. Del Arco A., Mora F. Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol. Biochem. Behav. 2008;90:226–235.
    1. den Boer J.A., Westenberg H.G. Oxytocin in obsessive compulsive disorder. Peptides. 1992;13:1083–1085.
    1. Detje C.N., Meyer T., Schmidt H., Kreuz D., Rose J.K., Bechmann I., Prinz M., Kalinke U. Local type I IFN receptor signaling protects against virus spread within the central nervous system. J. Immunol. 2009;182:2297–2304.
    1. DeVoe K., Jr., Rigsby W.C., McDaniels B.A. The effect of intranasal oxytocin on the pregnant uterus. Am. J. Obstet. Gynecol. 1967;97:208–212.
    1. Dhuria S.V., Hanson L.R., Frey W.H., 2nd Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2009
    1. Dhuria S.V., Hanson L.R., Frey W.H., 2nd Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. J. Pharm. Sci. 2009;98:2501–2515.
    1. Dhuria S.V., Hanson L.R., Frey W.H., 2nd Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J. Pharm. Sci. 2010;99:1654–1673.
    1. Di Simplicio M., Massey-Chase R., Cowen P.J., Harmer C.J. Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J. Psychopharmacol. 2009;23:241–248.
    1. Ditzen B., Schaer M., Gabriel B., Bodenmann G., Ehlert U., Heinrichs M. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol. Psychiatry. 2009;65:728–731.
    1. Domes G., Heinrichs M., Glascher J., Buchel C., Braus D.F., Herpertz S.C. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry. 2007;62:1187–1190.
    1. Domes G., Heinrichs M., Michel A., Berger C., Herpertz S.C. Oxytocin improves “mind-reading” in humans. Biol. Psychiatry. 2007;61:731–733.
    1. Domes G., Lischke A., Berger C., Grossmann A., Hauenstein K., Heinrichs M., Herpertz S.C. Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology. 2010;35:83–93.
    1. Donaldson Z.R., Young L.J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322:900–904.
    1. Du Vigneaud V., Ressler C., Trippett S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem. 1953;205:949–957.
    1. Ebner K., Bosch O.J., Kromer S.A., Singewald N., Neumann I.D. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology. 2005;30:223–230.
    1. Ebner K., Wotjak C.T., Landgraf R., Engelmann M. A single social defeat experience selectively stimulates the release of oxytocin, but not vasopressin, within the septal brain area of male rats. Brain Res. 2000;872:87–92.
    1. Ebstein R.P., Israel S., Lerer E., Uzefovsky F., Shalev I., Gritsenko I., Riebold M., Salomon S., Yirmiya N. Arginine vasopressin and oxytocin modulate human social behavior. Ann. N. Y. Acad. Sci. 2009;1167:87–102.
    1. Einer-Jensen N., Larsen L. Local transfer of diazepam, but not of cocaine, from the nasal cavities to the brain arterial blood in rats. Pharmacol. Toxicol. 2000;87:276–278.
    1. Einer-Jensen N., Larsen L. Transfer of tritiated water, tyrosine, and propanol from the nasal cavity to cranial arterial blood in rats. Exp. Brain Res. 2000;130:216–220.
    1. Einer-Jensen N., Larsen L., Deprez S., Starns E., Schwartz S. Intranasal absorption of sumatriptan and naratriptan: no evidence of local transfer from the nasal cavities to the brain arterial blood in male rats. Biopharm. Drug Dispos. 2001;22:213–219.
    1. Engelmann M., Ebner K., Wotjak C.T., Landgraf R. Endogenous oxytocin is involved in short-term olfactory memory in female rats. Behav. Brain Res. 1998;90:89–94.
    1. Engstrom L. Synthetic oxytocin (syntocinon Sandoz) in intravenous drip for induction of labour around full term. Acta Obstet. Gynecol. Scand. 1958;37:303–311.
    1. Enticott P.G., Kennedy H.A., Bradshaw J.L., Rinehart N.J., Fitzgerald P.B. Understanding mirror neurons: evidence for enhanced corticospinal excitability during the observation of transitive but not intransitive hand gestures. Neuropsychologia. 2010;48:2675–2680.
    1. Epperson C.N., McDougle C.J., Price L.H. Intranasal oxytocin in obsessive-compulsive disorder. Biol. Psychiatry. 1996;40:547–549.
    1. Erlich S.S., McComb J.G., Hyman S., Weiss M.H. Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J. Neurosurg. 1986;64:466–473.
    1. Ermisch A., Ruhle H.J., Landgraf R., Hess J. Blood-brain barrier and peptides. J. Cereb. Blood Flow Metab. 1985;5:350–357.
    1. Fa Z., Zhang P., Huang F., Li P., Zhang R., Xu R., Wen Z., Jiang X. Activity-induced manganese-dependent functional MRI of the rat visual cortex following intranasal manganese chloride administration. Neurosci. Lett. 2010;481:110–114.
    1. Fang L.Y., Quan R.D., Kaba H. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb. Neurosci. Lett. 2008;438:133–137.
    1. Feifel D., Macdonald K., Nguyen A., Cobb P., Warlan H., Galangue B., Minassian A., Becker O., Cooper J., Perry W., Lefebvre M., Gonzales J., Hadley A. Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol. Psychiatry. 2010;68(7):678–680.
    1. Feldberg W. The ventral surface of the brain stem: a scarcely explored region of pharmacological sensitivity. Neuroscience. 1976;1:427–441.
    1. Feng J., Li F., Zhao Y., Feng Y., Abe Y. Brain pharmacokinetics of tetramethylpyrazine after intranasal and intravenous administration in awake rats. Int. J. Pharm. 2009;375:55–60.
    1. Ferguson J.N., Aldag J.M., Insel T.R., Young L.J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 2001;21:8278–8285.
    1. Fernandez-Fewell G.D., Meredith M. Olfactory contribution to Fos expression during mating in inexperienced male hamsters. Chem. Sens. 1998;23:257–267.
    1. Ferris C.F. Functional magnetic resonance imaging and the neurobiology of vasopressin and oxytocin. Prog. Brain Res. 2008;170:305–320.
    1. Fewtrell M.S., Loh K.L., Blake A., Ridout D.A., Hawdon J. Randomised, double blind trial of oxytocin nasal spray in mothers expressing breast milk for preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 2006;91:F169–F174.
    1. Field P., Li Y., Raisman G. Ensheathment of the olfactory nerves in the adult rat. J. Neurocytol. 2003;32:317–324.
    1. Fischer-Shofty M., Shamay-Tsoory S.G., Harari H., Levkovitz Y. The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia. 2009
    1. Fisher A.N., Brown K., Davis S.S., Parr G.D., Smith D.A. The effect of molecular size on the nasal absorption of water-soluble compounds in the albino rat. J. Pharm. Pharmacol. 1987;39:357–362.
    1. Freund-Mercier M.J., Stoeckel M.E., Palacios J.M., Pazos A., Reichhart J.M., Porte A., Richard P. Pharmacological characteristics and anatomical distribution of [3H]oxytocin-binding sites in the Wistar rat brain studied by autoradiography. Neuroscience. 1987;20:599–614.
    1. Fry M., Ferguson A.V. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol. Behav. 2007;91:413–423.
    1. Fuchs A.R., Fuchs F., Husslein P., Soloff M.S. Oxytocin receptors in the human uterus during pregnancy and parturition. Am. J. Obstet. Gynecol. 1984;150:734–741.
    1. Furukawa M., Shimoda H., Kajiwara T., Kato S., Yanagisawa S. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed. Res. 2008;29:289–296.
    1. Fuxe K., Dahlstrom A., Hoistad M., Marcellino D., Jansson A., Rivera A., Diaz-Cabiale Z., Jacobsen K., Tinner-Staines B., Hagman B., Leo G., Staines W., Guidolin D., Kehr J., Genedani S., Belluardo N., Agnati L.F. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res. Rev. 2007;55:17–54.
    1. Fuxe K., Dahlstrom A.B., Jonsson G., Marcellino D., Guescini M., Dam M., Manger P., Agnati L. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 2010;90:82–100.
    1. Galic N., Prpic-Mehicic G., Prester L., Blanusa M., Krnic Z., Ferencic Z. Dental amalgam mercury exposure in rats. Biometals. 1999;12:227–231.
    1. Gamer M., Zurowski B., Buchel C. Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc. Natl. Acad. Sci. U. S. A. 2010;107(20):9400–9405.
    1. Gao X., Wu B., Zhang Q., Chen J., Zhu J., Zhang W., Rong Z., Chen H., Jiang X. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J. Control. Rel. 2007;121:156–167.
    1. Gastaut H.J., Bert J. EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1954;6:433–444.
    1. Ghosh S., Larson S.D., Hefzi H., Marnoy Z., Cutforth T., Dokka K., Baldwin K.K. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature. 2011;472:217–220.
    1. Gimpl G., Burger K., Politowska E., Ciarkowski J., Fahrenholz F. Oxytocin receptors and cholesterol: interaction and regulation. Exp. Physiol. 2000;85:41S–49S.
    1. Gimpl G., Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 2001;81:629–683.
    1. Gimpl G., Reitz J., Brauer S., Trossen C. Oxytocin receptors: ligand binding, signalling and cholesterol dependence. Prog. Brain Res. 2008;170:193–204.
    1. Goldman M.B., Gomes A.M., Carter C.S., Lee R. Divergent effects of two different doses of intranasal oxytocin on facial affect discrimination in schizophrenic patients with and without polydipsia. Psychopharmacology (Berl) 2011;216:101–110.
    1. Gomez D.G., Fenstermacher J.D., Manzo R.P., Johnson D., Potts D.G. Cerebrospinal fluid absorption in the rabbit: olfactory pathways. Acta Otolaryngol. 1985;100:429–436.
    1. Gossen A., Hahn A., Westphal L., Prinz S., Schultz R.T., Grunder G., Spreckelmeyer K.N. Oxytocin plasma concentrations after single intranasal oxytocin administration—A study in healthy men. Neuropeptides. 2012;46:211–215.
    1. Gouin J.P., Carter C.S., Pournajafi-Nazarloo H., Glaser R., Malarkey W.B., Loving T.J., Stowell J., Kiecolt-Glaser J.K. Marital behavior, oxytocin, vasopressin, and wound healing. Psychoneuroendocrinology. 2010;35:1082–1090.
    1. Gould B.R., Zingg H.H. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. Neuroscience. 2003;122:155–167.
    1. Graff C.L., Pollack G.M. Nasal drug administration: potential for targeted central nervous system delivery. J. Pharm. Sci. 2005;94:1187–1195.
    1. Grassin-Delyle S., Buenestado A., Naline E., Faisy C., Blouquit-Laye S., Couderc L.J., Le Guen M., Fischler M., Devillier P. Intranasal drug delivery: An efficient and non-invasive route for systemic administration: Focus on opioids. Pharmacol. Ther. 2012;134:366–379.
    1. Gray T.S., Carney M.E., Magnuson D.J. Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology. 1989;50:433–446.
    1. Green L., Fein D., Modahl C., Feinstein C., Waterhouse L., Morris M. Oxytocin and autistic disorder: alterations in peptide forms. Biol. Psychiatry. 2001;50:609–613.
    1. Grzegorzewski W., Skipor J., Wasowska B., Krzymowski T. Counter current transfer of oxytocin from the venous blood of the perihypophyseal cavernous sinus to the arterial blood of carotid rete supplying the hypophysis and brain depends on the phase of the estrous cycle in pigs. Biol. Reprod. 1995;52:139–144.
    1. Gu G., Cornea A., Simerly R.B. Sexual differentiation of projections from the principal nucleus of the bed nuclei of the stria terminalis. J. Comp. Neurol. 2003;460:542–562.
    1. Gu G.B., Simerly R.B. Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. J. Comp. Neurol. 1997;384:142–164.
    1. Guastella A.J., Einfeld S.L., Gray K.M., Rinehart N.J., Tonge B.J., Lambert T.J., Hickie I.B. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry. 2010;67:692–694.
    1. Guastella A.J., Howard A.L., Dadds M.R., Mitchell P., Carson D.S. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology. 2009;34:917–923.
    1. Guastella A.J., Mitchell P.B., Dadds M.R. Oxytocin increases gaze to the eye region of human faces. Biol. Psychiatry. 2008;63:3–5.
    1. Guindon J., Walczak J.S., Beaulieu P. Recent advances in the pharmacological management of pain. Drugs. 2007;67:2121–2133.
    1. Haagsma J.A., Polinder S., Olff M., Toet H., Bonsel G.J., van Beeck E.F. Posttraumatic stress symptoms and health-related quality of life: a two year follow up study of injury treated at the emergency department. BMC Psychiatry. 2012;12:1.
    1. Hahn-Holbrook J., Holt-Lunstad J., Holbrook C., Coyne S.M., Lawson E.T. Maternal defense: breast feeding increases aggression by reducing stress. Psychol. Sci. 2011;22:1288–1295.
    1. Han I.K., Kim M.Y., Byun H.M., Hwang T.S., Kim J.M., Hwang K.W., Park T.G., Jung W.W., Chun T., Jeong G.J., Oh Y.K. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J. Mol. Med. (Berlin, Germany) 2007;85:75–83.
    1. Hashizume R., Ozawa T., Gryaznov S.M., Bollen A.W., Lamborn K.R., Frey W.H., 2nd, Deen D.F. New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163. Neuro-oncol. 2008;10:112–120.
    1. Hatton G.I., Yang Q.Z. Supraoptic nucleus afferents from the main olfactory bulb--II. Intracellularly recorded responses to lateral olfactory tract stimulation in rat brain slices. Neuroscience. 1989;31:289–297.
    1. Hatton G.I., Yang Q.Z. Activation of excitatory amino acid inputs to supraoptic neurons. I. Induced increases in dye-coupling in lactating, but not virgin or male rats. Brain Res. 1990;513:264–269.
    1. Heinrichs M., Baumgartner T., Kirschbaum C., Ehlert U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry. 2003;54:1389–1398.
    1. Heinrichs M., Meinlschmidt G., Wippich W., Ehlert U., Hellhammer D.H. Selective amnesic effects of oxytocin on human memory. Physiol. Behav. 2004;83:31–38.
    1. Hendricks C.H., Gabel R.A. Use of intranasal oxytocin in obstetrics. 1: A laboratory evaluation. Am. J. Obstet. Gynecol. 1960;79:780–788.
    1. Hendricks C.H., Pose S.V. Intranasal oxytocin in obstetrics. JAMA. 1961;175:384–387.
    1. Henriksson J., Tjalve H. Uptake of inorganic mercury in the olfactory bulbs via olfactory pathways in rats. Environ. Res. 1998;77:130–140.
    1. Herkenham M. Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience. 1987;23:1–38.
    1. Heyes C. Where do mirror neurons come from? Neurosci. Biobehav. Rev. 2010;34:575–583.
    1. Hicks C., Jorgensen W., Brown C., Fardell J., Koehbach J., Gruber C.W., Kassiou M., Hunt G.E., McGregor I.S. The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats. J. Neuroendocrinol. 2012;24:1012–1029.
    1. Higuchi T., Tadokoro Y., Honda K., Negoro H. Detailed analysis of blood oxytocin levels during suckling and parturition in the rat. J. Endocrinol. 1986;110:251–256.
    1. Hinde F.C. The value of intranasal oxytocin spray in obstetrics. Med. J. Aust. 1963;50(1):268–270.
    1. Hohmann M., Kunzel W., Kirschbaum M. [The uterine contraction stress test with oxytocin nasal spray in the diagnosis of hypoxemia] Z. Geburtshilfe Perinatol. 1986;190:210–214.
    1. Hoover R.T. Intranasal oxytocin in eighteen hundred patients. A study on its safety as used in a community hospital. Am. J. Obstet. Gynecol. 1971;110:788–794.
    1. Horowitz L.F., Montmayeur J.P., Echelard Y., Buck L.B. A genetic approach to trace neural circuits. Proc. Natl. Acad. Sci. U. S. A. 1999;96:3194–3199.
    1. Horsburgh A., Massoud T.F. The circumventricular organs of the brain: conspicuity on clinical 3 T MRI and a review of functional anatomy. Surg. Radiol. Anat. 2012;2013(4):343–349.
    1. Houghten R.A., Swann R.W., Li C.H. beta-Endorphin: stability, clearance behavior, and entry into the central nervous system after intravenous injection of the tritiated peptide in rats and rabbits. Proc. Natl. Acad. Sci. U. S. A. 1980;77:4588–4591.
    1. Hull E.M. Sex, drugs and gluttony: how the brain controls motivated behaviors. Physiol. Behav. 2011;104:173–177.
    1. Hull E.M., Muschamp J.W., Sato S. Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav. 2004;83:291–307.
    1. Huntingford P.J. Intranasal use of synthetic oxytocin in management of breast-feeding. Br. Med. J. 1961;1:709–711.
    1. Hurlemann R., Patin A., Onur O.A., Cohen M.X., Baumgartner T., Metzler S., Dziobek I., Gallinat J., Wagner M., Maier W., Kendrick K.M. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J. Neurosci. 2010;30:4999–5007.
    1. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 2007;56:27–78.
    1. Illum L. Nasal drug delivery—possibilities, problems and solutions. J. Control. Rel. 2003;87:187–198.
    1. Illum L. Is nose-to-brain transport of drugs in man a reality? J. Pharm. Pharmacol. 2004;56:3–17.
    1. Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J. Pharm. Sci. 2007;96:473–483.
    1. in’t Veen J.P., van den Berg M.P., Romeijn S.G., Verhoef J.C., Merkus F.W. Uptake of fluorescein isothiocyanate-labelled dextran into the CSF after intranasal and intravenous administration to rats. Eur. J. Pharm. Biopharm. 2005;61:27–31.
    1. Ingram C.D., Moos F. Oxytocin-containing pathway to the bed nuclei of the stria terminalis of the lactating rat brain: immunocytochemical and in vitro electrophysiological evidence. Neuroscience. 1992;47:439–452.
    1. Insel T.R. Oxytocin—a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology. 1992;17:3–35.
    1. Insel T.R., Gingrich B.S., Young L.J. Oxytocin: who needs it? Prog. Brain Res. 2001;133:59–66.
    1. Insel T.R., Winslow J.T., Witt D.M. Homologous regulation of brain oxytocin receptors. Endocrinology. 1992;130:2602–2608.
    1. Ishak W.W., Berman D.S., Peters A. Male anorgasmia treated with oxytocin. J. Sex. Med. 2008;5:1022–1024.
    1. Ishikawa A., Ambroggi F., Nicola S.M., Fields H.L. Dorsomedial prefrontal cortex contribution to behavioral and nucleus accumbens neuronal responses to incentive cues. J. Neurosci. Off. J. Soc. Neurosci. 2008;28:5088–5098.
    1. Israel S., Lerer E., Shalev I., Uzefovsky F., Reibold M., Bachner-Melman R., Granot R., Bornstein G., Knafo A., Yirmiya N., Ebstein R.P. Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: from autism to altruism with some notes in between. Prog. Brain Res. 2008;170:435–449.
    1. Ivell R., Kimura T., Muller D., Augustin K., Abend N., Bathgate R., Telgmann R., Balvers M., Tillmann G., Fuchs A.R. The structure and regulation of the oxytocin receptor. Exp. Physiol. 2001;86:289–296.
    1. Jansson B., Bjork E. Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J. Drug Target. 2002;10:379–386.
    1. Jogani V., Jinturkar K., Vyas T., Misra A. Recent patents review on intranasal administration for CNS drug delivery. Recent Patents Drug Deliv. Formul. 2008;2:25–40.
    1. Johns J.M., Lubin D.A., Walker C.H., Joyner P., Middleton C., Hofler V., McMurray M. Gestational treatment with cocaine and fluoxetine alters oxytocin receptor number and binding affinity in lactating rat dams. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2004;22:321–328.
    1. Johnson N.J., Hanson L.R., Frey W.H. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol. Pharma. 2010;7:884–893.
    1. Johnston K.D., Walji A.H., Fox R.J., Pugh J.A., Aronyk K.E. Access to cerebrospinal fluid absorption sites by infusion into vascular channels of the skull diplo. J. Neurosurg. 2007;107:841–843.
    1. Johnston M. The importance of lymphatics in cerebrospinal fluid transport. Lymphat. Res. Biol. 2003;1:41–44. (discussion 45)
    1. Johnston M., Armstrong D., Koh L. Possible role of the cavernous sinus veins in cerebrospinal fluid absorption. Cerebrospinal Fluid Res. 2007;4:3.
    1. Johnston M., Zakharov A., Koh L., Armstrong D. Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol. Appl. Neurobiol. 2005;31:632–640.
    1. Johnston M., Zakharov A., Papaiconomou C., Salmasi G., Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1:2.
    1. Jones P.M., Robinson I.C. Differential clearance of neurophysin and neurohypophysial peptides from the cerebrospinal fluid in conscious guinea pigs. Neuroendocrinology. 1982;34:297–302.
    1. Jones P.M., Robinson I.C., Harris M.C. Release of oxytocin into blood and cerebrospinal fluid by electrical stimulation of the hypothalamus or neural lobe in the rat. Neuroendocrinology. 1983;37:454–458.
    1. Kang H., Wang H., Yu Q., Yang Q. Effect of intranasal immunization with inactivated avian influenza virus on local and systemic immune responses in ducks. Poult. Sci. 2012;91:1074–1080.
    1. Kang N., Baum M.J., Cherry J.A. Different profiles of main and accessory olfactory bulb mitral/tufted cell projections revealed in mice using an anterograde tracer and a whole-mount, flattened cortex preparation. Chem. Sens. 2011;36:251–260.
    1. Kang N., McCarthy E.A., Cherry J.A., Baum M.J. A sex comparison of the anatomy and function of the main olfactory bulb-medial amygdala projection in mice. Neuroscience. 2011;172:196–204.
    1. Kelliher K.R., Liu Y.C., Baum M.J., Sachs B.D. Neuronal Fos activation in olfactory bulb and forebrain of male rats having erections in the presence of inaccessible estrous females. Neuroscience. 1999;92:1025–1033.
    1. Kendrick K.M., Da Costa A.P., Broad K.D., Ohkura S., Guevara R., Levy F., Keverne E.B. Neural control of maternal behaviour and olfactory recognition of offspring. Brain Res. Bull. 1997;44:383–395.
    1. Kendrick K.M., Keverne E.B., Chapman C., Baldwin B.A. Intracranial dialysis measurement of oxytocin, monoamine and uric acid release from the olfactory bulb and substantia nigra of sheep during parturition, suckling, separation from lambs and eating. Brain Res. 1988;439:1–10.
    1. Kendrick K.M., Keverne E.B., Hinton M.R., Goode J.A. Cerebrospinal fluid and plasma concentrations of oxytocin and vasopressin during parturition and vaginocervical stimulation in the sheep. Brain Res. Bull. 1991;26:803–807.
    1. Keverne E.B., Kendrick K.M. Maternal behaviour in sheep and its neuroendocrine regulation. Acta Paediatr. Suppl. 1994;397:47–56.
    1. Kida S., Pantazis A., Weller R.O. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol. Appl. Neurobiol. 1993;19:480–488.
    1. Kida S., Weller R.O., Zhang E.T., Phillips M.J., Iannotti F. Anatomical pathways for lymphatic drainage of the brain and their pathological significance. Neuropathol. Appl. Neurobiol. 1995;21:181–184.
    1. Kim J., Li Y., Buckett P.D., Bohlke M., Thompson K.J., Takahashi M., Maher T.J., Wessling-Resnick M. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency. PLoS One. 2012;7:e33533.
    1. Kim S., Joo D.H., Lee J.B., Shim B.S., Cheon I.S., Jang J.E., Song H.H., Kim K.H., Song M.K., Chang J. Dual role of respiratory syncytial virus glycoprotein fragment as a mucosal immunogen and chemotactic adjuvant. PLoS One. 2012;7:e32226.
    1. Kincaid A.E., Bartz J.C. The nasal cavity is a route for prion infection in hamsters. J. Virol. 2007;81:4482–4491.
    1. Kinoshita Y., Shiga H., Washiyama K., Ogawa D., Amano R., Ito M., Tsukatani T., Furukawa M., Miwa T. Thallium transport and the evaluation of olfactory nerve connectivity between the nasal cavity and olfactory bulb. Chem. Sens. 2008;33:73–78.
    1. Kirsch P., Esslinger C., Chen Q., Mier D., Lis S., Siddhanti S., Gruppe H., Mattay V.S., Gallhofer B., Meyer-Lindenberg A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 2005;25:11489–11493.
    1. Knobloch H.S., Charlet A., Hoffmann L.C., Eliava M., Khrulev S., Cetin A.H., Osten P., Schwarz M.K., Seeburg P.H., Stoop R., Grinevich V. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 2012;73:553–566.
    1. Koh L., Nagra G., Johnston M. Properties of the lymphatic cerebrospinal fluid transport system in the rat: impact of elevated intracranial pressure. J. Vasc. Res. 2007;44:423–432.
    1. Koh L., Zakharov A., Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2005;2:6.
    1. Koh L., Zakharov A., Nagra G., Armstrong D., Friendship R., Johnston M. Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinates. Anat. Embryol. (Berl.) 2006;211:335–344.
    1. Kosfeld M., Heinrichs M., Zak P.J., Fischbacher U., Fehr E. Oxytocin increases trust in humans. Nature. 2005;435:673–676.
    1. Kovalenko R.I., Chernysheva M.P., Shtylik A.V., Nozdrachev A.D. [Asymmetry of peripheral effects of unilateral intranasal administration of oxytocin to male white rats] Dokl. Akad. Nauk. 1995;342:269–272.
    1. Kruger T.H., Schiffer B., Eikermann M., Haake P., Gizewski E., Schedlowski M. Serial neurochemical measurement of cerebrospinal fluid during the human sexual response cycle. Eur. J. Neurosci. 2006;24:3445–3452.
    1. Krukoff T.L., Harris K.H., Linetsky E., Jhamandas J.H. Expression of c-fos protein in rat brain elicited by electrical and chemical stimulation of the hypothalamic paraventricular nucleus. Neuroendocrinology. 1994;59:590–602.
    1. Krupp P.J., Jr., Mc L.L., St Romain R.A., Mc C.J. Intranasal synthetic oxytocin as an adjunct in breast feeding. J. La State Med. Soc. 1962;114:366–369.
    1. Krzymowski T. New pathways in animal reproductive physiology frontiers and perspectives. J. Physiol. Pharmacol. 1992;43:5–19.
    1. Labuschagne I., Phan K.L., Wood A., Angstadt M., Chua P., Heinrichs M., Stout J.C., Nathan P.J. Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology. 2010;35(12):2403–2413.
    1. Labuschagne I., Phan K.L., Wood A., Angstadt M., Chua P., Heinrichs M., Stout J.C., Nathan P.J. Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int. J. Neuropsychopharmacol. 2011:1–14.
    1. Lafay F., Coulon P., Astic L., Saucier D., Riche D., Holley A., Flamand A. Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation. Virology. 1991;183:320–330.
    1. Laine J. Experience of the use of intranasal, buccal and intravenous oxytocin as methods of inducing labour. Acta Obstet. Gynecol. Scand. 1970;49:149–159.
    1. Landgraf R. Plasma oxytocin concentrations in man after different routes of administration of synthetic oxytocin. Exp. Clin. Endocrinol. 1985;85:245–248.
    1. Landgraf R., Neumann I.D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 2004;25:150–176.
    1. Landgraf R., Schulz J., Eulenberger K., Wilhelm J. Plasma levels of oxytocin and vasopressin before, during and after parturition in cows. Exp. Clin. Endocrinol. 1983;81:321–328.
    1. Larrazolo-Lopez A., Kendrick K.M., Aburto-Arciniega M., Arriaga-Avila V., Morimoto S., Frias M., Guevara-Guzman R. Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb. Neuroscience. 2008;152:585–593.
    1. Larsen P.J., Mikkelsen J.D. Functional identification of central afferent projections conveying information of acute “stress” to the hypothalamic paraventricular nucleus. J. Neurosci. 1995;15:2609–2627.
    1. Larsen P.J., Moller M., Mikkelsen J.D. Efferent projections from the periventricular and medial parvicellular subnuclei of the hypothalamic paraventricular nucleus to circumventricular organs of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. J. Comp. Neurol. 1991;306:462–479.
    1. Lee H.J., Macbeth A.H., Pagani J.H., Young W.S., 3rd Oxytocin: the great facilitator of life. Prog. Neurobiol. 2009;88:127–151.
    1. Lehallier B., Coureaud G., Maurin Y., Bonny J.M. Effects of manganese injected into rat nostrils: implications for in vivo functional study of olfaction using MEMRI. Magn. Reson. Imaging. 2012;30:62–69.
    1. Leng G., Caquineau C., Ludwig M. Priming in oxytocin cells and in gonadotrophs. Neurochem. Res. 2008;33:668–677.
    1. Leng G., Caquineau C., Sabatier N. Regulation of oxytocin secretion. Vitam. Horm. 2005;71:27–58.
    1. Leng G., Ludwig M. Jacques Benoit Lecture. Information processing in the hypothalamus: peptides and analogue computation. J. Neuroendocrinol. 2006;18:379–392.
    1. Leng G., Onaka T., Caquineau C., Sabatier N., Tobin V.A., Takayanagi Y. Oxytocin and appetite. Prog. Brain Res. 2008;170:137–151.
    1. Lenz K.M., Sengelaub D.R. Maternal care effects on the development of a sexually dimorphic motor system: the role of spinal oxytocin. Horm. Behav. 2010;58:575–581.
    1. Levasseur G., Baly C., Grebert D., Durieux D., Salesse R., Caillol M. Anatomical and functional evidence for a role of arginine-vasopressin (AVP) in rat olfactory epithelium cells. Eur. J. Neurosci. 2004;20:658–670.
    1. Li Y., Field P.M., Raisman G. Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia. 2005;52:245–251.
    1. Li Y.X., Chen L.B., Xia Z.L., Yang M.F., Zhang Y.Z., Zhang X.Y. Drainage of macromolecules from the Caudato-Putamen of rat brain. Chin. J. Physiol. 2005;48:7–14.
    1. Liberzon I., Young E.A. Effects of stress and glucocorticoids on CNS oxytocin receptor binding. Psychoneuroendocrinology. 1997;22:411–422.
    1. Lillie P.J., Berthoud T.K., Powell T.J., Lambe T., Mullarkey C., Spencer A.J., Hamill M., Peng Y., Blais M.E., Duncan C.J., Sheehy S.H., Havelock T., Faust S.N., Williams R.L., Gilbert A., Oxford J., Dong T., Hill A.V., Gilbert S.C. A preliminary assessment of the efficacy of a T cell-based influenza vaccine, MVA-NP + M1, in humans. Clin. Infect. Dis. 2012
    1. Liu Q., Shen Y., Chen J., Gao X., Feng C., Wang L., Zhang Q., Jiang X. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharma. Res. 2012;29:546–558.
    1. Lochhead J.J., Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012;64(7):614–628.
    1. Loup F., Tribollet E., Dubois-Dauphin M., Dreifuss J.J. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res. 1991;555:220–232.
    1. Loup F., Tribollet E., Dubois-Dauphin M., Pizzolato G., Dreifuss J.J. Localization of oxytocin binding sites in the human brainstem and upper spinal cord: an autoradiographic study. Brain Res. 1989;500:223–230.
    1. Ludwig M. Dendritic release of vasopressin and oxytocin. J. Neuroendocrinol. 1998;10:881–895.
    1. Ludwig M., Leng G. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci. 2006;7:126–136.
    1. Luhman L.A. The effect of intranasal oxytocin on lactation. Obstet. Gynecol. 1963;21:713–717.
    1. Lukas M., Toth I., Reber S.O., Slattery D.A., Veenema A.H., Neumann I.D. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2011;36:2159–2168.
    1. Lukas M., Toth I., Veenema A.H., Neumann I.D. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: Male juvenile versus female adult conspecifics. Psychoneuroendocrinology. 2013;38(6):916–926.
    1. Lundin S., Akerlund M., Fagerstrom P.O., Hauksson A., Melin P. Pharmacokinetics in the human of a new synthetic vasopressin and oxytocin uterine antagonist. Acta Endocrinol. (Copenh.) 1986;112:465–472.
    1. Maas C., Bruck W., Haffner H.T., Schweinsberg F. [Study on the significance of mercury accumulation in the brain from dental amalgam fillings through direct mouth-nose-brain transport] Zentralbl. Hyg. Umweltmed. 1996;198:275–291.
    1. Macdonald K., Macdonald T.M. The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harv. Rev. Psychiatry. 2010;18:1–21.
    1. Maejima Y., Iwasaki Y., Yamahara Y., Kodaira M., Sedbazar U., Yada T. Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging (Milano) 2011;3:1169–1177.
    1. Majde J.A., Bohnet S.G., Ellis G.A., Churchill L., Leyva-Grado V., Wu M., Szentirmai E., Rehman A., Krueger J.M. Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection. J. Neurovirol. 2007;13:399–409.
    1. Marcilhac A., Siaud P. Identification of projections from the central nucleus of the amygdala to the paraventricular nucleus of the hypothalamus which are immunoreactive for corticotrophin-releasing hormone in the rat. Exp. Physiol. 1997;82:273–281.
    1. Matsuoka Y., Gray A.J., Hirata-Fukae C., Minami S.S., Waterhouse E.G., Mattson M.P., LaFerla F.M., Gozes I., Aisen P.S. Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J. Mol. Neurosci. 2007;31:165–170.
    1. McEwen B.B. General introduction to vasopressin and oxytocin: structure/metabolism, evolutionary aspects, neural pathway/receptor distribution, and functional aspects relevant to memory processing. Adv. Pharmacol. 2004;50:1–50. 655–708.
    1. McEwen B.S. Genomic regulation of sexual behavior. J. Steroid Biochem. 1988;30:179–183.
    1. McGinty V.B., Grace A.A. Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli. Cereb. Cortex. 2008;18:1961–1972.
    1. McKinley M.J., McAllen R.M., Davern P., Giles M.E., Penschow J., Sunn N., Uschakov A., Oldfield B.J. The sensory circumventricular organs of the mammalian brain. Adv. Anat. Embryol. Cell Biol. 2003;172 (III-XII, 1–122, back cover)
    1. McMartin C., Hutchinson L.E., Hyde R., Peters G.E. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J. Pharm. Sci. 1987;76:535–540.
    1. Meddle S.L., Bishop V.R., Gkoumassi E., van Leeuwen F.W., Douglas A.J. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology. 2007;148:5095–5104.
    1. Meddle S.L., Leng G., Selvarajah J.R., Bicknell R.J., Russell J.A. Direct pathways to the supraoptic nucleus from the brainstem and the main olfactory bulb are activated at parturition in the rat. Neuroscience. 2000;101:1013–1021.
    1. Meinlschmidt G., Heim C. Sensitivity to intranasal oxytocin in adult men with early parental separation. Biol. Psychiatry. 2007;61:1109–1111.
    1. Mens W.B., Witter A., van Wimersma Greidanus T.B. Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res. 1983;262:143–149.
    1. Meredith M. Vomeronasal, olfactory, hormonal convergence in the brain. Cooperation or coincidence? Ann. N. Y. Acad. Sci. 1998;855:349–361.
    1. Merkus F.W., van den Berg M.P. Can nasal drug delivery bypass the blood-brain barrier?.: questioning the direct transport theory. Drugs R&D. 2007;8:133–144.
    1. Meyer-Lindenberg A. Impact of prosocial neuropeptides on human brain function. Prog. Brain Res. 2008;170:463–470.
    1. Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 2011;12:524–538.
    1. Michel G., Chauvet J., Chauvet M.T., Clarke C., Bern H., Acher R. Chemical identification of the mammalian oxytocin in a holocephalian fish, the ratfish (Hydrolagus colliei) Gen. Comp. Endocrinol. 1993;92:260–268.
    1. Milhorat T.H. The third circulation revisited. J. Neurosurg. 1975;42:628–645.
    1. Mitchell B.F., Schmid B. Oxytocin and its receptor in the process of parturition. J. Soc. Gynecol. Investig. 2001;8:122–133.
    1. Miyamichi K., Amat F., Moussavi F., Wang C., Wickersham I., Wall N.R., Taniguchi H., Tasic B., Huang Z.J., He Z., Callaway E.M., Horowitz M.A., Luo L. Cortical representations of olfactory input by trans-synaptic tracing. Nature. 2011;472:191–196.
    1. Modahl C., Green L., Fein D., Morris M., Waterhouse L., Feinstein C., Levin H. Plasma oxytocin levels in autistic children. Biol. Psychiatry. 1998;43:270–277.
    1. Moos F., Fontanaud P., Mekaouche M., Brown D. Oxytocin neurones are recruited into co-ordinated fluctuations of firing before bursting in the rat. Neuroscience. 2004;125:391–410.
    1. Moos F., Marganiec A., Fontanaud P., Guillou-Duvoid A., Alonso G. Synchronization of oxytocin neurons in suckled rats: possible role of bilateral innervation of hypothalamic supraoptic nuclei by single medullary neurons. Eur. J. Neurosci. 2004;20:66–78.
    1. Moos F., Richard P. Paraventricular and supraoptic bursting oxytocin cells in rat are locally regulated by oxytocin and functionally related. J. Physiol. 1989;408:1–18.
    1. Morales J.A., Herzog S., Kompter C., Frese K., Rott R. Axonal transport of Borna disease virus along olfactory pathways in spontaneously and experimentally infected rats. Med. Microbiol. Immunol. 1988;177:51–68.
    1. Mori I., Goshima F., Ito H., Koide N., Yoshida T., Yokochi T., Kimura Y., Nishiyama Y. The vomeronasal chemosensory system as a route of neuroinvasion by herpes simplex virus. Virology. 2005;334:51–58.
    1. Morris J.F., Ludwig M. Magnocellular dendrites: prototypic receiver/transmitters. J. Neuroendocrinol. 2004;16:403–408.
    1. Mucignat-Caretta C. The rodent accessory olfactory system. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2010;196:767–777.
    1. Muth S., Fries A., Gimpl G. Cholesterol-induced conformational changes in the oxytocin receptor. Biochem. J. 2011;437:541–553.
    1. Mygind N., Andersson M. Topical glucocorticosteroids in rhinitis: clinical aspects. Acta Otolaryngol. 2006;126:1022–1029.
    1. Naber F., van Ijzendoorn M.H., Deschamps P., van Engeland H., Bakermans-Kranenburg M.J. Intranasal oxytocin increases fathers’ observed responsiveness during play with their children: a double-blind within-subject experiment. Psychoneuroendocrinology. 2010;35:1583–1586.
    1. Nagasawa M., Okabe S., Mogi K., Kikusui T. Oxytocin and mutual communication in mother-infant bonding. Front. Hum. Neurosci. 2012;6:31.
    1. Nagayama S., Enerva A., Fletcher M.L., Masurkar A.V., Igarashi K.M., Mori K., Chen W.R. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front. Neural Circuits. 2010;4
    1. Nagra G., Koh L., Zakharov A., Armstrong D., Johnston M. Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:R1383–R1389.
    1. Nagra G., Li J., McAllister J.P., 2nd, Miller J., Wagshul M., Johnston M. Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;294:R1752–R1759.
    1. Nedelec S., Dubacq C., Trembleau A. Morphological and molecular features of the mammalian olfactory sensory neuron axons: What makes these axons so special? J. Neurocytol. 2005;34:49–64.
    1. Nelson E.A., Yu L.M. Poverty focused assistance: new category of development aid. Lancet. 1996;348:1642–1643.
    1. Neumann I., Douglas A.J., Pittman Q.J., Russell J.A., Landgraf R. Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J. Neuroendocrinol. 1996;8:227–233.
    1. Neumann I.D. Brain mechanisms underlying emotional alterations in the peripartum period in rats. Depress. Anxiety. 2003;17:111–121.
    1. Neumann I.D. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J. Neuroendocrinol. 2008;20:858–865.
    1. Neumann I.D. The advantage of social living: brain neuropeptides mediate the beneficial consequences of sex and motherhood. Front. Neuroendocrinol. 2009;30:483–496.
    1. Neumann I.D., Kromer S.A., Toschi N., Ebner K. Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. Regul. Pept. 2000;96:31–38.
    1. Neumann I.D., Landgraf R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012;35(11):649–659.
    1. Neumann I.D., Maloumby R., Beiderbeck D.I., Lukas M., Landgraf R. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology. 2013 in press.
    1. Neumann I.D., Wigger A., Torner L., Holsboer F., Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J. Neuroendocrinol. 2000;12:235–243.
    1. Newlin D.B., Renton R.M. A self in the mirror: mirror neurons, self-referential processing, and substance use disorders. Subst. Use Misuse. 2010;45:1697–1726.
    1. Newton M., Egli G.E. The effect of intranasal administration of oxytocin on the let-down of milk in lactating women. Am. J. Obstet. Gynecol. 1958;76:103–107.
    1. Ninan I. Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex. J. Neurochem. 2011;119:324–331.
    1. Norman G.J., Cacioppo J.T., Morris J.S., Karelina K., Malarkey W.B., Devries A.C., Berntson G.G. Selective influences of oxytocin on the evaluative processing of social stimuli. J. Psychopharmacol. 2010
    1. Norman G.J., Cacioppo J.T., Morris J.S., Malarkey W.B., Berntson G.G., Devries A.C. Oxytocin increases autonomic cardiac control: moderation by loneliness. Biol. Psychol. 2011;86:174–180.
    1. Northcutt K.V., Lonstein J.S. Social contact elicits immediate-early gene expression in dopaminergic cells of the male prairie vole extended olfactory amygdala. Neuroscience. 2009;163:9–22.
    1. Novejarque A., Gutierrez-Castellanos N., Lanuza E., Martinez-Garcia F. Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Front. Neuroanat. 2011;5:54.
    1. Oberman L.M., Pineda J.A., Ramachandran V.S. The human mirror neuron system: a link between action observation and social skills. Soc. Cogn. Affect. Neurosci. 2007;2:62–66.
    1. Oberman L.M., Ramachandran V.S., Pineda J.A. Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia. 2008;46:1558–1565.
    1. Ochsenkuhn R., Pavlik R., Hecht S., von Schonfeldt V., Rogenhofer N., Thaler C.J. The effect of nasal oxytocin on pregnancy rates following intrauterine insemination: double-blind, randomized, clinical pilot study. Arch. Gynecol. Obstet. 2010;281:753–759.
    1. Ohman L., Hahnenberger R., Johansson E.D. 17 beta-estradiol levels in blood and cerebrospinal fluid after ocular and nasal administration in women and female rhesus monkeys (Macaca mulatta) Contraception. 1980;22:349–358.
    1. Olff M. Bonding after trauma: on the role of social support and the oxytocin system in traumatic stress. Eur. J. Psychotraumatol. 2012;3
    1. Olivier J.D., de Jong T.R., Jos Dederen P., van Oorschot R., Heeren D., Pattij T., Waldinger M.D., Coolen L.M., Cools A.R., Olivier B., Veening J.G. Effects of acute and chronic apomorphine on sex behavior and copulation-induced neural activation in the male rat. Eur. J. Pharmacol. 2007;576:61–76.
    1. Opar A. Search for potential autism treatments turns to ‘trust hormone’. Nat. Med. 2008;14:353.
    1. Ortigue S., Sinigaglia C., Rizzolatti G., Grafton S.T. Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study. PLoS One. 2010;5
    1. Osako Y., Otsuka T., Taniguchi M., Oka T., Kaba H. Oxytocin depresses spontaneous gamma-aminobutyric acid-ergic inhibitory postsynaptic currents in cultured mitral cells of the rat olfactory bulb by a presynaptic mechanism. Neurosci. Lett. 2000;289:25–28.
    1. Osako Y., Otsuka T., Taniguchi M., Oka T., Kaba H. Oxytocin enhances presynaptic and postsynaptic glutamatergic transmission between rat olfactory bulb neurones in culture. Neurosci. Lett. 2001;299:65–68.
    1. Papaiconomou C., Zakharov A., Azizi N., Djenic J., Johnston M. Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv. Syst. 2004;20:29–36.
    1. Pardridge W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx: J. Am. Soc. Exp. NeuroTherapeutics. 2005;2:3–14.
    1. Parker K.J., Buckmaster C.L., Schatzberg A.F., Lyons D.M. Intranasal oxytocin administration attenuates the ACTH stress response in monkeys. Psychoneuroendocrinology. 2005;30:924–929.
    1. Pathan S.A., Iqbal Z., Zaidi S.M., Talegaonkar S., Vohra D., Jain G.K., Azeem A., Jain N., Lalani J.R., Khar R.K., Ahmad F.J. CNS drug delivery systems: novel approaches. Recent Patents Drug Deliv. Formul. 2009;3:71–89.
    1. Paxinos G. third ed. Elsevier; San Diego (CA): 2004. The Rat Nervous System.
    1. Perez A.P., Mundina-Weilenmann C., Romero E.L., Morilla M.J. Increased brain radioactivity by intranasal P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. Int. J. Nanomed. 2012;7:1373–1385.
    1. Perkins T., Stokes M., McGillivray J., Bittar R. Mirror neuron dysfunction in autism spectrum disorders. J. Clin. Neurosci. 2010
    1. Perl D.P., Good P.F. The association of aluminum Alzheimer's disease, and neurofibrillary tangles. J. Neural. Transm. Suppl. 1987;24:205–211.
    1. Perl D.P., Good P.F. Uptake of aluminium into central nervous system along nasal-olfactory pathways. Lancet. 1987;1:1028.
    1. Perlman S., Barnett E., Jacobsen G. Mouse hepatitis virus and herpes simplex virus move along different CNS pathways. Adv. Exp. Med. Biol. 1993;342:313–318.
    1. Perlman S., Evans G., Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J. Exp. Med. 1990;172:1127–1132.
    1. Perlman S., Sun N., Barnett E.M. Spread of MHV-JHM from nasal cavity to white matter of spinal cord. Transneuronal movement and involvement of astrocytes. Adv. Exp. Med. Biol. 1995;380:73–78.
    1. Perry A., Bentin S., Shalev I., Israel S., Uzefovsky F., Bar-On D., Ebstein R.P. Intranasal oxytocin modulates EEG mu/alpha and beta rhythms during perception of biological motion. Psychoneuroendocrinology. 2010;35(10):1446–1453.
    1. Pfaus J.G. Pathways of sexual desire. J. Sex. Med. 2009;6:1506–1533.
    1. Pietrowsky R., Claassen L., Frercks H., Fehm H.L., Born J. Time course of intranasally administered cholecystokinin-8 on central nervous effects. Neuropsychobiology. 2001;43:254–259.
    1. Pietrowsky R., Thiemann A., Kern W., Fehm H.L., Born J. A nose-brain pathway for psychotropic peptides: evidence from a brain evoked potential study with cholecystokinin. Psychoneuroendocrinology. 1996;21:559–572.
    1. Pitman R.K., Orr S.P., Lasko N.B. Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res. 1993;48:107–117.
    1. Pollock H., Hutchings M., Weller R.O., Zhang E.T. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J. Anat. 1997;191(Pt 3):337–346.
    1. Procario M.C., Levine R.E., McCarthy M.K., Kim E., Zhu L., Chang C.H., Hershenson M.B., Weinberg J.B. Susceptibility to acute mouse adenovirus type 1 respiratory infection and establishment of protective immunity in neonatal mice. J. Virol. 2012;86:4194–4203.
    1. Proescholdt M.G., Hutto B., Brady L.S., Herkenham M. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14 C]inulin in rat. Neuroscience. 2000;95:577–592.
    1. Quirin M., Kuhl J., Dusing R. Oxytocin buffers cortisol responses to stress in individuals with impaired emotion regulation abilities. Psychoneuroendocrinology. 2011;36:898–904.
    1. Rabhi M., Stoeckel M.E., Calas A., Freund-Mercier M.J. Historadioautographic localisation of oxytocin and vasopressin binding sites in the central nervous system of the merione (Meriones shawi) Brain Res. Bull. 1999;48:147–163.
    1. Raghuwanshi D., Mishra V., Das D., Kaur K., Suresh M.R. Dendritic Cell Targeted Chitosan Nanoparticles for Nasal DNA Immunization against SARS CoV Nucleocapsid Protein. Mol. Pharm. 2012;9:946–956.
    1. Renner D.B., Frey W.H., 2nd, Hanson L.R. Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway. Neurosci. Lett. 2012;513:193–197.
    1. Riem M.M., Bakermans-Kranenburg M.J., Pieper S., Tops M., Boksem M.A., Vermeiren R.R., van Ijzendoorn M.H., Rombouts S.A. Oxytocin modulates amygdala, insula, and inferior frontal gyrus responses to infant crying: a randomized controlled trial. Biol. Psychiatry. 2011;70:291–297.
    1. Riem M.M., van IJzendoorn M.H., Tops M., Boksem M.A., Rombouts S.A., Bakermans-Kranenburg M.J. No laughing matter: intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter. Neuropsychopharmacology. 2012;37(5):1257–1266.
    1. Rigoard P., Buffenoir K., Jaafari N., Giot J.P., Houeto J.L., Mertens P., Velut S., Bataille B. The accumbofrontal fasciculus in the human brain: a microsurgical anatomical study. Neurosurgery. 2011;68:1102–1111. (discussion 1111)
    1. Rimmele U., Hediger K., Heinrichs M., Klaver P. Oxytocin makes a face in memory familiar. J. Neurosci. 2009;29:38–42.
    1. Rizzolatti G., Craighero L. The mirror-neuron system. Annu. Rev. Neurosci. 2004;27:169–192.
    1. Rizzolatti G., Fabbri-Destro M. Mirror neurons: from discovery to autism. Exp. Brain Res. 2010;200:223–237.
    1. Rizzolatti G., Fadiga L., Gallese V., Fogassi L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 1996;3:131–141.
    1. Rizzolatti G., Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 2010;11:264–274.
    1. Robertson G.S., Pfaus J.G., Atkinson L.J., Matsumura H., Phillips A.G., Fibiger H.C. Sexual behavior increases c-fos expression in the forebrain of the male rat. Brain Res. 1991;564:352–357.
    1. Robinson I.C. Neurohypophysial peptides in cerebrospinal fluid. Prog. Brain Res. 1983;60:129–145.
    1. Robinson I.C., Jones P.M. Oxytocin and neurophysin in plasma and CSF during suckling in the guinea-pig. Neuroendocrinology. 1982;34:59–63.
    1. Rogers M.E., Firestein S.J. Unlocking the DOR code. Neuron. 2001;30:305–307.
    1. Ross H.E., Cole C.D., Smith Y., Neumann I.D., Landgraf R., Murphy A.Z., Young L.J. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience. 2009;162:892–903.
    1. Ross H.E., Freeman S.M., Spiegel L.L., Ren X., Terwilliger E.F., Young L.J. Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J. Neurosci. 2009;29:1312–1318.
    1. Ross H.E., Young L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 2009;30:534–547.
    1. Rossoni E., Feng J., Tirozzi B., Brown D., Leng G., Moos F. Emergent synchronous bursting of oxytocin neuronal network. PLoS Comput. Biol. 2008;4:e1000123.
    1. Ruvin Kumara V.M., Wessling-Resnick M. Olfactory ferric and ferrous iron absorption in iron-deficient rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012;302:L1280–L1286.
    1. Sakane T., Akizuki M., Taki Y., Yamashita S., Sezaki H., Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J. Pharm. Pharmacol. 1995;47:379–381.
    1. Sakane T., Akizuki M., Yoshida M., Yamashita S., Nadai T., Hashida M., Sezaki H. Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J. Pharm. Pharmacol. 1991;43:449–451.
    1. Sakka L., Coll G., Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011;128:309–316.
    1. Salvatore C.A. [Intranasal administration of oxytocin in the management and induction of labor.] An. Bras. Ginecol. 1963;55:123–132.
    1. Sanchez-Andrade G., Kendrick K.M. The main olfactory system and social learning in mammals. Behav. Brain Res. 2009;200:323–335.
    1. Sandholm L. The effect of intravenous and intranasal oxytocin on intramamary pressure during early lactation. Acta Obstet. Gynecol. Scand. 1968;47:145–154.
    1. Saphier D., Mor G., Feldman S. Neurogenic stimuli alter preoptic area and amygdala unit activity: central effects of olfactory projections on paraventricular nucleus units. Exp. Neurol. 1988;100:71–82.
    1. Sauer C., Montag C., Worner C., Kirsch P., Reuter M. Effects of a common variant in the CD38 gene on social processing in an oxytocin challenge study: possible links to autism. Neuropsychopharmacol.: Off. Publ. Am. Coll. Neuropsychopharmacol. 2012
    1. Savaskan E., Ehrhardt R., Schulz A., Walter M., Schachinger H. Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology. 2008;33:368–374.
    1. Sawchenko P.E., Swanson L.W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 1982;205:260–272.
    1. Sawchenko P.E., Swanson L.W., Vale W.W. Corticotropin-releasing factor: co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat. J. Neurosci. Off. J. Soc. Neurosci. 1984;4:1118–1129.
    1. Sbriccoli M., Cardone F., Valanzano A., Lu M., Graziano S., De Pascalis A., Ingrosso L., Zanusso G., Monaco S., Bentivoglio M., Pocchiari M. Neuroinvasion of the 263 K scrapie strain after intranasal administration occurs through olfactory-unrelated pathways. Acta Neuropathol. 2009;117:175–184.
    1. Schoenfeld T.A., Clancy A.N., Forbes W.B., Macrides F. The spatial organization of the peripheral olfactory system of the hamster. Part I: Receptor neuron projections to the main olfactory bulb. Brain Res. Bull. 1994;34:183–210.
    1. Schorscher-Petcu A., Dupre A., Tribollet E. Distribution of vasopressin and oxytocin binding sites in the brain and upper spinal cord of the common marmoset. Neurosci. Lett. 2009;461:217–222.
    1. Sewards T.V., Sewards M.A. Fear and power-dominance motivation: proposed contributions of peptide hormones present in cerebrospinal fluid and plasma. Neurosci. Biobehav. Rev. 2003;27:247–267.
    1. Sewards T.V., Sewards M.A. Representations of motivational drives in mesial cortex, medial thalamus, hypothalamus and midbrain. Brain Res. Bull. 2003;61:25–49.
    1. Shahrokh D.K., Zhang T.Y., Diorio J., Gratton A., Meaney M.J. Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology. 2010;151:2276–2286.
    1. Shamay-Tsoory S.G., Fischer M., Dvash J., Harari H., Perach-Bloom N., Levkovitz Y. Intranasal administration of oxytocin increases envy and schadenfreude (Gloating) Biol. Psychiatry. 2009
    1. Shankar V., Kao M., Hamir A.N., Sheng H., Koprowski H., Dietzschold B. Kinetics of virus spread and changes in levels of several cytokine mRNAs in the brain after intranasal infection of rats with Borna disease virus. J. Virol. 1992;66:992–998.
    1. Shipley M.T. Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res. Bull. 1985;15:129–142.
    1. Shipley M.T., Ennis M. Functional organization of olfactory system. J. Neurobiol. 1996;30:123–176.
    1. Shipley M.T., Ennis M., Puche A. Olfactory system. In: Paxinos G., editor. The Rat Nervous System. third ed. Elsevier; San Diego: 2004. pp. 922–963.
    1. Shtylik A.V., Chernysheva M.P., Kovalenko R.I., Nozdrachev A.D. [The lateralization effect of oxytocin on the functional activity of paired visceral organs in rats] Fiziol. Zh. Im. I M Sechenova. 1995;81:89–97.
    1. Siegel A., Schubert K.L., Shaikh M.B. Neurotransmitters regulating defensive rage behavior in the cat. Neurosci. Biobehav. Rev. 1997;21:733–742.
    1. Simeon D., Bartz J., Hamilton H., Crystal S., Braun A., Ketay S., Hollander E. Oxytocin administration attenuates stress reactivity in borderline personality disorder: A pilot study. Psychoneuroendocrinology. 2011;36(9):1418–1421.
    1. Simmons D.M., Swanson L.W. Comparison of the spatial distribution of seven types of neuroendocrine neurons in the rat paraventricular nucleus: toward a global 3D model. J. Comp. Neurol. 2009;516:423–441.
    1. Siso S., Jeffrey M., Gonzalez L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 2010;120:689–705.
    1. Skipor J., Grzegorzewski W., Einer-Jensen N., Wasowska B. Local vascular pathway for progesterone transfer to the brain after nasal administration in gilts. Reprod. Biol. 2003;3:143–159.
    1. Skipor J., Grzegorzewski W., Wasowska B., Krzymowski T. Counter current transfer of beta-endorphin in the perihypophyseal cavernous sinus–carotid rete vascular complex of sheep. Exp. Clin. Endocrinol. Diab. 1997;105:308–313.
    1. Skipor J., Wasowska B., Picard S., Thiery J.C. Access of dopamine to the median eminence and brain throughout local vascular pathways in sheep. Reprod. Biol. 2004;4:91–106.
    1. Smith A.S., Agmo A., Birnie A.K., French J.A. Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates, Callithrix penicillata. Horm. Behav. 2010;57:255–262.
    1. Smith T.W., Uchino B.N., Mackenzie J., Hicks A.M., Campo R.A., Reblin M., Grewen K.M., Amico J.A., Light K.C. Effects of couple interactions and relationship quality on plasma oxytocin and cardiovascular reactivity: Empirical findings and methodological considerations. Int. J. Psychophysiol.: Off. J. Int. Org. Psychophysiol. 2012
    1. Smithson K.G., Weiss M.L., Hatton G.I. Supraoptic nucleus afferents from the main olfactory bulb--I. Anatomical evidence from anterograde and retrograde tracers in rat. Neuroscience. 1989;31:277–287.
    1. Smithson K.G., Weiss M.L., Hatton G.I. Supraoptic nucleus afferents from the accessory olfactory bulb: evidence from anterograde and retrograde tract tracing in the rat. Brain Res. Bull. 1992;29:209–220.
    1. Sosulski D.L., Bloom M.L., Cutforth T., Axel R., Datta S.R. Distinct representations of olfactory information in different cortical centres. Nature. 2011;472:213–216.
    1. Strathearn L. Maternal neglect: oxytocin, dopamine and the neurobiology of attachment. J. Neuroendocrinol. 2011;23(11):1054–1065.
    1. Stern B.D. Milk let-down—the use of intranasal oxytocin for nursing mothers. Calif. Med. 1961;95:168–169.
    1. Stichbury P.C. Intranasal synthetic oxytocin in the induction of labour. N. Z. Med. J. 1962;61:160–161.
    1. Stortebecker P. Mercury poisoning from dental amalgam through a direct nose-brain transport. Lancet. 1989;1:1207.
    1. Strachan M.W. Insulin and cognitive function in humans: experimental data and therapeutic considerations. Biochem. Soc. Trans. 2005;33:1037–1040.
    1. Striepens N., Kendrick K.M., Maier W., Hurlemann R. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front. Neuroendocrinol. 2011;32:426–450.
    1. Suarez J., Romero-Zerbo S.Y., Rivera P., Bermudez-Silva F.J., Perez J., De Fonseca F.R., Fernandez-Llebrez P. Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J. Comp. Neurol. 2010;518:3065–3085.
    1. Suzumura M., Kawamura M., Kikuchi S., Kawada A., Shibayama Y., Otabe J. Intranasal oxytocin for the induction and stimulation of labor. J. Jpn. Obstet. Gynecol. Soc. 1966;13:42–50.
    1. Swann J., Rahaman F., Bijak T., Fiber J. The main olfactory system mediates pheromone-induced fos expression in the extended amygdala and preoptic area of the male Syrian hamster. Neuroscience. 2001;105:695–706.
    1. Swanson E.W., Claycomb J.E. Oxytocin in dry period inhibits lactation. J. Dairy Sci. 1969;52:1116–1119.
    1. Swanson L.W., McKellar S. The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J. Comp. Neurol. 1979;188:87–106.
    1. Tai G., Eun-Young J., Yuji H., Masahiko K., Toshio H., Kenji K., Kenshi F., Mitsufumi M. Different effects of cyclic AMP and butyrate on eosinophilic differentiation, apoptosis and bcl-2 expression of a human eosinophilic leukemia cell line, EoL-1. Hematol. Oncol. 1996;14:181–192.
    1. Terenzi M.G., Jiang Q.B., Cree S.J., Wakerley J.B., Ingram C.D. Effect of gonadal steroids on the oxytocin-induced excitation of neurons in the bed nuclei of the stria terminalis at parturition in the rat. Neuroscience. 1999;91:1117–1127.
    1. Theodoridou A., Rowe A.C., Penton-Voak I.S., Rogers P.J. Oxytocin and social perception: oxytocin increases perceived facial trustworthiness and attractiveness. Horm. Behav. 2009;56:128–132.
    1. Thorne R.G., Emory C.R., Ala T.A., Frey W.H., 2nd Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692:278–282.
    1. Thorne R.G., Hanson L.R., Ross T.M., Tung D., Frey W.H., 2nd Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 2008;152:785–797.
    1. Thorne R.G., Pronk G.J., Padmanabhan V., Frey W.H., 2nd Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127:481–496.
    1. Tomlinson A.H., Esiri M.M. Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory pathways in mice. J. Neurol. Sci. 1983;60:473–484.
    1. Tribollet E., Barberis C., Dubois-Dauphin M., Dreifuss J.J. Localization and characterization of binding sites for vasopressin and oxytocin in the brain of the guinea pig. Brain Res. 1992;589:15–23.
    1. Tribollet E., Charpak S., Schmidt A., Dubois-Dauphin M., Dreifuss J.J. Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J. Neurosci. 1989;9:1764–1773.
    1. Tribollet E., Dubois-Dauphin M., Dreifuss J.J., Barberis C., Jard S. Oxytocin receptors in the central nervous system. Distribution, development, and species differences. Ann. N. Y. Acad. Sci. 1992;652:29–38.
    1. Triemstra J.L., Nagatani S., Wood R.I. Chemosensory cues are essential for mating-induced dopamine release in MPOA of male Syrian hamsters. Neuropsychopharmacol.: Off. Publ. Am. Coll. Neuropsychopharmacol. 2005;30:1436–1442.
    1. Uchoa E.T., Mendes da Silva L.E., de Castro M., Antunes-Rodrigues J., Elias L.L. Hypothalamic oxytocin neurons modulate hypophagic effect induced by adrenalectomy. Horm. Behav. 2009;56:532–538.
    1. Usunoff K.G., Schmitt O., Itzev D.E., Haas S.J., Lazarov N.E., Rolfs A., Wree A. Efferent projections of the anterior and posterodorsal regions of the medial nucleus of the amygdala in the mouse. Cells Tissues Organs. 2009;190:256–285.
    1. Vaccari C., Lolait S.J., Ostrowski N.L. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology. 1998;139:5015–5033.
    1. Van den Berg M.P., Merkus P., Romeijn S.G., Verhoef J.C., Merkus F.W. Hydroxocobalamin uptake into the cerebrospinal fluid after nasal and intravenous delivery in rats and humans. J. Drug Target. 2003;11:325–331.
    1. van den Berg M.P., Merkus P., Romeijn S.G., Verhoef J.C., Merkus F.W. Uptake of melatonin into the cerebrospinal fluid after nasal and intravenous delivery: studies in rats and comparison with a human study. Pharma. Res. 2004;21:799–802.
    1. van den Berg M.P., Verhoef J.C., Romeijn S.G., Merkus F.W. Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats. Eur. J. Pharm. Biopharm. 2004;58:131–135.
    1. Van Ijzendoorn M.H., Bakermans-Kranenburg M.J. A sniff of trust: Meta-analysis of the effects of intranasal oxytocin administration on face recognition, trust to in-group, and trust to out-group. Psychoneuroendocrinology. 2012;37:438–443.
    1. Veenema A.H., Neumann I.D. Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog. Brain Res. 2008;170:261–276.
    1. Veening J.G., Barendregt H.P. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res. 2010;7:1.
    1. Veening J.G., Coolen L.M. Neural activation following sexual behavior in the male and female rat brain. Behav. Brain Res. 1998;92:181–193.
    1. Veening J.G., Coolen L.M., de Jong T.R., Joosten H.W., de Boer S.F., Koolhaas J.M., Olivier B. Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. Eur. J. Pharmacol. 2005;526:226–239.
    1. Veening J.G., de Jong T., Barendregt H.P. Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol. Behav. 2010;101:193–210.
    1. Veening J.G., Gerrits P.O., Barendregt H.P. Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS. 2012;9:16.
    1. Veening J.G., Swanson L.W., Sawchenko P.E. The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport-immunohistochemical study. Brain Res. 1984;303:337–357.
    1. Viero C., Shibuya I., Kitamura N., Verkhratsky A., Fujihara H., Katoh A., Ueta Y., Zingg H.H., Chvatal A., Sykova E., Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci. Ther. 2010;16:e138–e156.
    1. Viviani D., Charlet A., van den Burg E., Robinet C., Hurni N., Abatis M., Magara F., Stoop R. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science. 2011;333:104–107.
    1. Viviani D., Stoop R. Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. Prog. Brain Res. 2008;170:207–218.
    1. Wacker D.W., Ludwig M. Vasopressin, oxytocin, and social odor recognition. Horm. Behav. 2011
    1. Walch K., Eder R., Schindler A., Feichtinger W. The effect of single-dose oxytocin application on time to ejaculation and seminal parameters in men. J. Assist. Reprod. Genet. 2001;18:655–659.
    1. Waldherr M., Neumann I.D. Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc. Natl. Acad. Sci. U. S. A. 2007;104:16681–16684.
    1. Walter B.A., Valera V.A., Takahashi S., Matsuno K., Ushiki T. Evidence of antibody production in the rat cervical lymph nodes after antigen administration into the cerebrospinal fluid. Arch. Histol. Cytol. 2006;69:37–47.
    1. Walter B.A., Valera V.A., Takahashi S., Ushiki T. The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol. Appl. Neurobiol. 2006;32:388–396.
    1. Wamboldt M.Z., Insel T.R. The ability of oxytocin to induce short latency maternal behavior is dependent on peripheral anosmia. Behav. Neurosci. 1987;101:439–441.
    1. Wan C.Y., Demaine K., Zipse L., Norton A., Schlaug G. From music making to speaking: engaging the mirror neuron system in autism. Brain Res. Bull. 2010;82:161–168.
    1. Wang Q., Chen G., Zeng S. Pharmacokinetics of Gastrodin in rat plasma and CSF after i.n. and i.v. Int. J. Pharm. 2007;341:20–25.
    1. Wang Q., Chen G., Zeng S. Distribution and metabolism of gastrodin in rat brain. J. Pharm. Biomed. Anal. 2008;46:399–404.
    1. Wang X., He H., Leng W., Tang X. Evaluation of brain-targeting for the nasal delivery of estradiol by the microdialysis method. Int. J. Pharm. 2006;317:40–46.
    1. Wang Y.C., Ho U.C., Ko M.C., Liao C.C., Lee L.J. Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Struct. Funct. 2011
    1. Weaver E.A., Mercier G.T., Gottschalk S., Barry M.A. T-cell-biased immune responses generated by a mucosally targeted adenovirus-sigma1 vaccine. Mucosal Immunol. 2012;5:311–319.
    1. Weisman O., Zagoory-Sharon O., Feldman R. Intranasal oxytocin administration is reflected in human saliva. Psychoneuroendocrinology. 2012
    1. Weller R.O., Djuanda E., Yow H.Y., Carare R.O. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117:1–14.
    1. Weller R.O., Kida S., Zhang E.T. Pathways of fluid drainage from the brain—morphological aspects and immunological significance in rat and man. Brain Pathol. 1992;2:277–284.
    1. Weller R.O., Subash M., Preston S.D., Mazanti I., Carare R.O. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol. 2008;18:253–266.
    1. Wenner R. The galactokinetic properties of synthetic oxytocin administered by the intranasal route. J. Obstet. Gynaecol. Br. Emp. 1962;69:899–903.
    1. Westin U.E., Bostrom E., Grasjo J., Hammarlund-Udenaes M., Bjork E. Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharma. Res. 2006;23:565–572.
    1. Williams J.H. Self-other relations in social development and autism: multiple roles for mirror neurons and other brain bases. Autism Res. 2008;1:73–90.
    1. Witt D.M., Carter C.S., Lnsel T.R. Oxytocin receptor binding in female prairie voles: endogenous and exogenous oestradiol stimulation. J. Neuroendocrinol. 1991;3:155–161.
    1. Wolf D.A., Hanson L.R., Aronovich E.L., Nan Z., Low W.C., Frey W.H., 2nd, McIvor R.S. Lysosomal enzyme can bypass the blood-brain barrier and reach the CNS following intranasal administration. Mol. Genet. Metab. 2012;106(1):131–134.
    1. Woollam D.H., Millen J.W. The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J. Anat. 1955;89:193–200.
    1. Xu Y.J., Yau L., Yu L.P., Elimban V., Zahradka P., Dhalla N.S. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes. Biochem. Pharmacol. 1996;52:1735–1740.
    1. Yamashita H., Okuya S., Inenaga K., Kasai M., Uesugi S., Kannan H., Kaneko T. Oxytocin predominantly excites putative oxytocin neurons in the rat supraoptic nucleus in vitro. Brain Res. 1987;416:364–368.
    1. Yamasue H., Kuwabara H., Kawakubo Y., Kasai K. Oxytocin, sexually dimorphic features of the social brain, and autism. Psychiatry Clin. Neurosci. 2009;63:129–140.
    1. Yang J.P., Liu H.J., Cheng S.M., Wang Z.L., Cheng X., Yu H.X., Liu X.F. Direct transport of VEGF from the nasal cavity to brain. Neurosci. Lett. 2009;449:108–111.
    1. Yoshida M., Takayanagi Y., Inoue K., Kimura T., Young L.J., Onaka T., Nishimori K. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 2009;29:2259–2271.
    1. Young L.J., Murphy Young A.Z., Hammock E.A. Anatomy and neurochemistry of the pair bond. J. Comp. Neurol. 2005;493:51–57.
    1. Young L.J., Pitkow L.J., Ferguson J.N. Neuropeptides and social behavior: animal models relevant to autism. Mol. Psychiatry. 2002;7(Suppl. 2):S38–S39.
    1. Young L.J., Wang Z. The neurobiology of pair bonding. Nat. Neurosci. 2004;7:1048–1054.
    1. Yu G.Z., Kaba H., Okutani F., Takahashi S., Higuchi T. The olfactory bulb: a critical site of action for oxytocin in the induction of maternal behaviour in the rat. Neuroscience. 1996;72:1083–1088.
    1. Yu G.Z., Kaba H., Okutani F., Takahashi S., Higuchi T., Seto K. The action of oxytocin originating in the hypothalamic paraventricular nucleus on mitral and granule cells in the rat main olfactory bulb. Neuroscience. 1996;72:1073–1082.
    1. Yu H., Kim K. Direct nose-to-brain transfer of a growth hormone releasing neuropeptide, hexarelin after intranasal administration to rabbits. Int. J. Pharm. 2009;378:73–79.
    1. Yuan S., Zhang B., Wang Z., Xia K. [HPLC analysis of the influence of processing on the contents of genkwanin in flos Genkwa] Zhongguo Zhong Yao Za Zhi. 1996;21:728–729. 761.
    1. Yun T., Ye W., Ni Z., Zhang D., Zhang C. Identification and molecular characterization of a novel flavivirus isolated from Pekin ducklings in China. Vet. Microbiol. 2012;157(3–4):311–319.
    1. Zakharov A., Papaiconomou C., Djenic J., Midha R., Johnston M. Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol. Appl. Neurobiol. 2003;29:563–573.
    1. Zakharov A., Papaiconomou C., Johnston M. Lymphatic vessels gain access to cerebrospinal fluid through unique association with olfactory nerves. Lymphat. Res. Biol. 2004;2:139–146.
    1. Zhu H.G., Zhou G.Y., Yu Y.C., Zhang Z.Y. [Surgical approach plus Nd:YAG laser irradiation for the management of hemangioma in deep maxillofacial region] Shanghai Kou Qiang Yi Xue. 1996;5:187–188.
    1. Zingg H.H., Grazzini E., Breton C., Larcher A., Rozen F., Russo C., Guillon G., Mouillac B. Genomic and non-genomic mechanisms of oxytocin receptor regulation. Adv. Exp. Med. Biol. 1998;449:287–295.
    1. Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 2011;12:723–738.
    1. Zoli M., Jansson A., Sykova E., Agnati L.F., Fuxe K. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 1999;20:142–150.

Source: PubMed

3
Abonnere