Hepatitis B virus surface proteins accelerate cholestatic injury and tumor progression in Abcb4-knockout mice

Daniel Zahner, Hannah Glimm, Tomomitsu Matono, Yuri Churin, Diran Herebian, Ertan Mayatepek, Kernt Köhler, Stefan Gattenlöhner, Anne Stinn, Annette Tschuschner, Martin Roderfeld, Elke Roeb, Daniel Zahner, Hannah Glimm, Tomomitsu Matono, Yuri Churin, Diran Herebian, Ertan Mayatepek, Kernt Köhler, Stefan Gattenlöhner, Anne Stinn, Annette Tschuschner, Martin Roderfeld, Elke Roeb

Abstract

Understanding of the pathophysiology of cholestasis associated carcinogenesis could challenge the development of new personalized therapeutic approaches and thus improve prognosis. Simultaneous damage might aggravate hepatic injury, induce chronic liver disease and even promote carcinogenesis. We aimed to study the effect of Hepatitis B virus surface protein (HBsAg) on cholestatic liver disease and associated carcinogenesis in a mouse model combining both impairments. Hybrids of Abcb4-/- and HBsAg transgenic mice were bred on fibrosis susceptible background BALB/c. Liver injury, serum bile acid concentration, hepatic fibrosis, and carcinogenesis were enhanced by the combination of simultaneous damage in line with activation of c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, and Signal transducer and activator of transcription 3 (STAT3). Activation of Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK) and Eukaryotic translation initiation factor 2A (eIF2α) indicated unfolded protein response (UPR) in HBsAg-expressing mice and even in Abcb4-/- without HBsAg-expression.

Conclusion: Cholestasis-induced STAT3- and JNK-pathways may predispose HBsAg-associated tumorigenesis. Since STAT3- and JNK-activation are well characterized critical regulators for tumor promotion, the potentiation of their activation in hybrids suggests an additive mechanism enhancing tumor incidence.

Keywords: ER-stress; HBsAg; carcinogenesis; cholangitis; fibrosis.

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare that no conflicts of interest exist.

Figures

Figure 1. HBsAg expression elevates liver injury…
Figure 1. HBsAg expression elevates liver injury in Abcb4 knockout mice
A. Liver histology demonstrates accelerated portal inflammation and pronounced bile duct disease in Abcb4−/−/HBsAg+/− mice. Magnification x200, scale bars 100 μm. B. HBsAg expression increases serum ALT in Abcb4−/− mice. Open bars represent wild types, light grey bars Abcb4−/−, dark grey bars HBsAg+/−, and black bars Abcb4−/−/HBsAg+/−. C. Western blotting demonstrates reduced expression of HBsAg and ER stress in Abcb4−/−/HBsAg+/− mice. D. Immunohistochemistry visualizes reduced HBsAg expression in female Abcb4−/−/HBsAg+/− mice. Representative micrographs are shown.
Figure 2. Total serum BA levels raise…
Figure 2. Total serum BA levels raise while relative amount of protective BAs decrease in Abcb4−/−/HBsAg+/− mice
A. Total serum taurine conjugated Bas (T-BAs) increased in Abcb4−/−/HBsAg+/−-mice in comparison to controls. Serum T-BAs were measured by UHPLC-MS/MS at the day of sacrifice. Total T-BAs are depicted. Note, total T-BAs were increased in Abcb4−/−-mice in comparison to wt controls and in HBsAg+/− transgenic mice aged 52 weeks as well (#). B. Relative amount of protective TUDCA was decreased in Abcb4−/−/HBsAg+/−-mice. Results are presented as means ± SEM, n=4-10. *p<0.05 as indicated, #p=0.001 in comparison to wt control. Open bars represent wild types, light grey bars Abcb4−/−, dark bars HBsAg+/−, and black bars Abcb4−/−/HBsAg+/−. C. Scatter-plot demonstrates the correlation of ALT and total serum T-BA levels. All data of 52 week old animals are included; open dots wt, grey dots Abcb4−/−, dark grey dots HBsAg+/−, black dots Abcb4−/−/HBsAg+/−. D. Scatter-plot demonstrates the correlation of ALT and total serum T-BA levels in HBsAg+/−-mice. E and F. Absolute- (E) and relative (F) composition of the 8 most abundant bile acids in serum.
Figure 3. Hepatic fibrosis is elevated in…
Figure 3. Hepatic fibrosis is elevated in Abcb4−/−/HBsAg+/− mice
A. Representative Sirius red staining demonstrates enhanced collagen accumulation in Abcb4−/−/HBsAg+/− mice. Magnification x100, scale bars 200 μm. B. Quantification of SiriusRed positive area was performed by computer-analysis (ImageJ). Open bars represent wild types, light grey bars Abcb4−/−, dark grey bars HBsAg+/−, and black bars Abcb4−/−/HBsAg+/−. C. HBsAg expression enhanced HSC activation and ductular reaction. Representative immunohistochemical stainings for quiescent HSC marker GFAP, HSC activation marker desmin, and transcription factor SOX9 in 12-16 week old mice. Magnification x100, scale bars 100μm. Results are presented as means ± SEM, n=6-10. *p<0.05 as indicated.
Figure 4. Induction of carcinogenic pathways enhanced…
Figure 4. Induction of carcinogenic pathways enhanced tumor incidence in Abcb4−/−/HBsAg+/− mice
A. Macroscopic view of well vascularized primary tumors > 5mm in diameter which appeared more frequently in Abcb4−/−/HBsAg+/− mice. B. Tumor diameter is shown in Box and Whisker Plots. Enhanced incidence was calculated with Chi2 statistics. The upper and lower hinges of the box represent the 75th and 25th percentile, respectively. The line indicates the median value; error bars represent the minimum and maximum. C. Western blot analysis of phospho-SAPK/JNK (P-JNK), β-actin, phospho-c-Jun (P-cJun), c-Jun, phospho-STAT3 (P-STAT3), and STAT3 demonstrate enhanced induction of carcinogenic pathways in Abcb4−/−/HBsAg+/− mice.
Figure 5. Tumors in Abcb4 −/− /HBsAg…
Figure 5. Tumors in Abcb4−/−/HBsAg+/− mice show histological characteristics of HCC
A. A representative H&E staining demonstrates well defined tumor borders (dashed line). B. Tumor stroma is nearly free from Sirius red staining fibrillar collagen. Arrows point out fibrotic area in surrounding liver tissue. C. Ki67 staining (arrows) demonstrates pronounced proliferation in tumor stroma. D. Type IV collagen immunostaining depicts a lack of expression inside tumor stroma. E. Immunostaining for glutamine synthetase depicts expression in pericentral hepatocytes (arrows) and diffuse expression pattern in tumor stroma. F. Immunostaining for HBsAg demonstrates the loss of transgene expression in tumors. L liver, T tumor. Magnification x100 A-F, scale bars 100μm.

References

    1. Jacquemin E. Progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol. 2012;36:S26–S35.
    1. Linton KJ. Lipid flopping in the liver. Biochem Soc Trans. 2015;43:1003–1010.
    1. Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, Marschall HU, Denk H, Trauner M. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology. 2004;127:261–274.
    1. Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris) 2010;58:258–266.
    1. Schuch A, Hoh A, Thimme R. The role of natural killer cells and CD8(+) T cells in hepatitis B virus infection. Front Immunol. 2014;5:258.
    1. Meuleman P, Libbrecht L, Wieland S, De VR, Habib N, Kramvis A, Roskams T, Leroux-Roels G. Immune suppression uncovers endogenous cytopathic effects of the hepatitis B virus. J Virol. 2006;80:2797–2807.
    1. Pol S. Management of HBV in immunocompromised patients. Liver Int. 2013;33:182–187.
    1. Shouval D, Shibolet O. Immunosuppression and HBV reactivation. Semin Liver Dis. 2013;33:167–177.
    1. Chisari FV, Filippi P, McLachlan A, Milich DR, Riggs M, Lee S, Palmiter RD, Pinkert CA, Brinster RL. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J Virol. 1986;60:880–887.
    1. Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA, Brinster RL, Palmiter RD. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989;59:1145–1156.
    1. Churin Y, Roderfeld M, Stiefel J, Wurger T, Schroder D, Matono T, Mollenkopf HJ, Montalbano R, Pompaiah M, Reifenberg K, Zahner D, Ocker M, Gerlich W, et al. Pathological impact of hepatitis B virus surface proteins on the liver is associated with the host genetic background. PLoS One. 2014;9:e90608.
    1. Montalbano R, Honrath B, Wissniowski TT, Elxnat M, Roth S, Ocker M, Quint K, Churin Y, Roederfeld M, Schroeder D, Glebe D, Roeb E, Di Fazio P. Exogenous hepatitis B virus envelope proteins induce endoplasmic reticulum stress: involvement of cannabinoid axis in liver cancer cells. Oncotarget. 2016;7:20312–23. doi: 10.18632/oncotarget.7950.
    1. Wirth S, Guidotti LG, Ando K, Schlicht HJ, Chisari FV. Breaking tolerance leads to autoantibody production but not autoimmune liver disease in hepatitis B virus envelope transgenic mice. J Immunol. 1995;154:2504–2515.
    1. Churin Y, Roderfeld M, Roeb E. Hepatitis B virus large surface protein: function and fame. Hepatobiliary Surg Nutr. 2015;4:1–10.
    1. Reifenberg K, Hildt E, Lecher B, Wiese E, Nusser P, Ott S, Yamamura K, Rutter G, Lohler J. IFNgamma expression inhibits LHBs storage disease and ground glass hepatocyte appearance, but exacerbates inflammation and apoptosis in HBV surface protein-accumulating transgenic livers1. Liver Int. 2006;26:986–993.
    1. Tseng TC, Liu CJ, Yang HC, Su TH, Wang CC, Chen CL, Hsu CA, Kuo SF, Liu CH, Chen PJ, Chen DS, Kao JH. Serum hepatitis B surface antigen levels help predict disease progression in patients with low hepatitis B virus loads. Hepatology. 2013;57:441–450.
    1. Kawanaka M, Nishino K, Nakamura J, Oka T, Urata N, Goto D, Suehiro M, Kawamoto H, Kudo M, Yamada G. Quantitative Levels of Hepatitis B Virus DNA and Surface Antigen and the Risk of Hepatocellular Carcinoma in Patients with Hepatitis B Receiving Long-Term Nucleos(t)ide Analogue Therapy. Liver Cancer. 2014;3:41–52.
    1. Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum HE, Wagner EF, Hasselblatt P. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23:576–582.
    1. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease1. J Hepatol. 2011;54:795–809.
    1. Jörs S, Jeliazkova P, Ringelhan M, Thalhammer J, Durl S, Ferrer J, Sander M, Heikenwalder M, Schmid RM, Siveke JT, Geisler F. Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest. 2015;125:2445–2457.
    1. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, Grompe M. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15:605–618.
    1. Roderfeld M, Rath T, Voswinckel R, Dierkes C, Dietrich H, Zahner D, Graf J, Roeb E. Bone marrow transplantation demonstrates medullar origin of CD34+ fibrocytes and ameliorates hepatic fibrosis in Abcb4−/− mice. Hepatology. 2010;51:267–276.
    1. Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology. 2016;63:914–929.
    1. Rigopoulou EI, Zachou K, Gatselis NK, Papadamou G, Koukoulis GK, Dalekos GN. Primary biliary cirrhosis in HBV and HCV patients: Clinical characteristics and outcome. World J Hepatol. 2013;5:577–583.
    1. Yaghobi R, Didari M, Gramizadeh B, Rahsaz M, Heidari T, Banihashemi M, Kargar M. Study of viral infections in infants with biliary atresia. Indian J Pediatr. 2011;78:478–481.
    1. Burgart LJ. Cholangitis in viral disease. Mayo Clin Proc. 1998;73:479–482.
    1. Gupta E, Chakravarti A. Viral infections of the biliary tract. Saudi J Gastroenterol. 2008;14:158–160.
    1. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–845.
    1. Song P, Zhang Y, Klaassen CD. Dose-response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice. Toxicol Sci. 2011;123:359–367.
    1. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15:1677–1689.
    1. Schoemaker MH, Conde de la RL, Buist-Homan M, Vrenken TE, Havinga R, Poelstra K, Haisma HJ, Jansen PL, Moshage H. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology. 2004;39:1563–1573.
    1. Adachi T, Kaminaga T, Yasuda H, Kamiya T, Hara H. The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury1. J Clin Biochem Nutr. 2014;54:129–135.
    1. Flowers MT, Keller MP, Choi Y, Lan H, Kendziorski C, Ntambi JM, Attie AD. Liver gene expression analysis reveals endoplasmic reticulum stress and metabolic dysfunction in SCD1-deficient mice fed a very low-fat diet1. Physiol Genomics. 2008;33:361–372.
    1. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol. 2008;48:335–352.
    1. Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, Wagner EF. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell. 2003;112:181–192.
    1. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammationand cancer. Cell Res. 2011;21:159–168.
    1. Graumann F, Churin Y, Tschuschner A, Reifenberg K, Glebe D, Roderfeld M, Roeb E. Genomic Methylation Inhibits Expression of Hepatitis B Virus Envelope Protein in Transgenic Mice: A Non-Infectious Mouse Model to Study Silencing of HBV Surface Antigen Genes. PLoS One. 2015;10:e0146099.
    1. Bochkis IM, Rubins NE, White P, Furth EE, Friedman JR, Kaestner KH. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress1. Nat Med. 2008;14:828–836.
    1. Dai BH, Geng L, Wang Y, Sui CJ, Xie F, Shen RX, Shen WF, Yang JM. microRNA-199a-5p protects hepatocytes from bile acid-induced sustained endoplasmic reticulum stress1. Cell Death Dis. 2013;4:e604.
    1. Tang J, Guo YS, Zhang Y, Yu XL, Li L, Huang W, Li Y, Chen B, Jiang JL, Chen ZN. CD147 induces UPR to inhibit apoptosis and chemosensitivity by increasing the transcription of Bip in hepatocellular carcinoma1. Cell Death Differ. 2012;19:1779–1790.
    1. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N, Yamamoto M. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis1. J Hepatol. 2003;38:605–614.
    1. Mencin A, Seki E, Osawa Y, Kodama Y, De MS, Knowles M, Brenner DA. Alpha-1 antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine model of cholestasis. Hepatology. 2007;46:1443–1452.
    1. Roderfeld M, Rath T, Lammert F, Dierkes C, Graf J, Roeb E. Innovative immunohistochemistry identifies MMP-9 expressing macrophages at the invasive front of murine HCC. World J Hepatol. 2010;2:175–179.
    1. Seki E, De MS, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–1332.
    1. Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C, Hernandez BY, Alegado R, Dong B, Li D, Jia W. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget. 2016;7:19355–19366. doi: 10.18632/oncotarget.8466.
    1. Roderfeld M, Rath T, Pasupuleti S, Zimmermann M, Neumann C, Churin Y, Dierkes C, Voswinckel R, Barth PJ, Zahner D, Graf J, Roeb E. Bone marrow transplantation improves hepatic fibrosis in Abcb4−/− mice via Th1 response and matrix metalloproteinase activity. Gut. 2012;61:907–916.
    1. Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH. Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol. 1984;52:396–402.
    1. Henkel C, Roderfeld M, Weiskirchen R, Berres ML, Hillebrandt S, Lammert F, Meyer HE, Stuhler K, Graf J, Roeb E. Changes of the hepatic proteome in murine models for toxically induced fibrogenesis and sclerosing cholangitis. Proteomics. 2006;6:6538–6548.
    1. Sawitza I, Kordes C, Gotze S, Herebian D, Haussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320.

Source: PubMed

3
Abonnere