Acute Effects of High Intensity, Resistance, or Combined Protocol on the Increase of Level of Neurotrophic Factors in Physically Inactive Overweight Adults: The BrainFit Study

María A Domínguez-Sanchéz, Rosa H Bustos-Cruz, Gina P Velasco-Orjuela, Andrea P Quintero, Alejandra Tordecilla-Sanders, Jorge E Correa-Bautista, Héctor R Triana-Reina, Antonio García-Hermoso, Katherine González-Ruíz, Carlos A Peña-Guzmán, Enrique Hernández, Jhonatan C Peña-Ibagon, Luis A Téllez-T, Mikel Izquierdo, Robinson Ramírez-Vélez, María A Domínguez-Sanchéz, Rosa H Bustos-Cruz, Gina P Velasco-Orjuela, Andrea P Quintero, Alejandra Tordecilla-Sanders, Jorge E Correa-Bautista, Héctor R Triana-Reina, Antonio García-Hermoso, Katherine González-Ruíz, Carlos A Peña-Guzmán, Enrique Hernández, Jhonatan C Peña-Ibagon, Luis A Téllez-T, Mikel Izquierdo, Robinson Ramírez-Vélez

Abstract

The purpose of this study was to compare the neurotrophic factor response following one session of high-intensity exercise, resistance training or both in a cohort of physically inactive overweight adults aged 18-30 years old. A randomized, parallel-group clinical trial of 51 men (23.6 ± 3.5 years; 83.5 ± 7.8 kg; 28.0 ± 1.9 kg/m2) who are physically inactive (i.e., < 150 min of moderate-intensity exercise per week or IPAQ score of <600 MET min/week for >6 months) and are either abdominally obese (waist circumference ≥90 cm) or have a body mass index, BMI ≥25 and ≤ 30 kg/m2 were randomized to the following four exercise protocols: high-intensity exercise (4 × 4 min intervals at 85-95% maximum heart rate [HRmax] interspersed with 4 min of recovery at 75-85% HRmax) (n = 14), resistance training (12-15 repetitions per set, at 50-70% of one repetition maximum with 60 s of recovery) (n = 12), combined high-intensity and resistance exercise (n = 13), or non-exercising control (n = 12). The plasma levels of neurotrophin-3 (NT-3), neurotrophin-4 (also known as neurotrophin 4/5; NT-4 or NT-4/5), and brain-derived neurotrophic factor (BDNF) were determined before (pre-exercise) and 1-min post-exercise for each protocol session. Resistance training induced significant increases in NT-3 (+39.6 ng/mL [95% CI, 2.5-76.6; p = 0.004], and NT-4/5 (+1.3 ng/mL [95% CI, 0.3-2.3; p = 0.014]), respectively. Additionally, combined training results in favorable effects on BDNF (+22.0, 95% CI, 2.6-41.5; p = 0.029) and NT-3 (+32.9 ng/mL [95% CI, 12.3-53.4; p = 0.004]), respectively. The regression analysis revealed a significant positive relationship between changes in BDNF levels and changes in NT-4/5 levels from baseline to immediate post-exercise in the combined training group (R2 = 0.345, p = 0.034) but not the other intervention groups. The findings indicate that acute resistance training and combined exercise increase neurotrophic factors in physically inactive overweight adults. Further studies are required to determine the biological importance of changes in neurotrophic responses in overweight men and chronic effects of these exercise protocols.

Trial registration: ClinicalTrials.gov, NCT02915913 (Date: September 22, 2016).

Keywords: exercise; inactivity; neurotrophic factors; obesity; plasticity.

Figures

Figure 1
Figure 1
Run-in training interventions. (A), HIIT group; (B), RT group. Combined training group were received both the HIIT and RT protocols as described above.
Figure 2
Figure 2
The BrainFit Trial Flow Diagram. Those whose blood samples (n = 5) were technically inadequate and not analyzed. BMI, body mass index.
Figure 3
Figure 3
The regression analysis revealed a significant positive relationship between changes in BDNF levels and changes in NT-4/5 levels from baseline to immediate post-exercise in the combined training group (R2 = 0.345, p = 0.034; C). Additionally, no relationship was found between changes in BDNF levels and changes in NT-3 levels (A,B,D).

References

    1. Afzalpour M. E., Chadorneshin H. T., Foadoddini M., Eivari H. A. (2015). Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol. Behav. 147, 78–83. 10.1016/j.physbeh.2015.04.012
    1. Alberti K., Eckel R., Grundy S., Zimmet P., Cleeman J., Donato K. (2009). Harmonizing the metabolic syndrome. A joint interim statement of the IDF task force on epidemiology and prevention; NHL and blood institute; AHA; WHF; IAS; and IA for the study of obesity. Circulation 120, 1640–1645. 10.5114/aoms.2013.34560
    1. Andersson K., Areskoug D., Hardenborg E. (1999). Exploring buffer space for molecular interactions. J. Mol. Recogn. 12, 310–315. 10.1002/(SICI)1099-1352(199909/10)12:5<310::AID-JMR470>;2-5
    1. Barha C. K., Galea L. A., Nagamatsu L. S., Erickson K. I., Liu-Ambrose T. (2017). Personalising exercise recommendations for brain health: considerations and future directions. Br. J. Sports Med. 51, 636–639. 10.1136/bjsports-2016-096710
    1. Buch A., Kis O., Carmeli E., Keinan-Boker L., Berner Y., Barer Y., et al. . (2017). Circuit resistance training is an effective means to enhance muscle strength in older adults: a systematic review and meta-analysis. Ageing Res. Rev. 37, 16–27. 10.1016/j.arr.2017.04.003
    1. Bustos R. H., Suesca E., Millán D., González J. M., Fontanilla M. R. (2014). Real-time quantification of proteins secreted by artificial connective tissue made from uni- or multidirectional collagen I scaffolds and oral mucosa fibroblasts. Anal. Chem. 86, 2421–2428. 10.1021/ac4033164
    1. Cai D., Holm J. M., Duignan I. J., Zheng J., Xaymardan M., Chin A., et al. . (2006). BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiol. Genom. 24, 191–197. 10.1152/physiolgenomics.00165.2005
    1. Centers for Medicare and Medicaid Service (2005). Clinical Laboratory Improvement Amendments (CLIA). Atlanta, GA.
    1. Chaldakov G. N., Fiore M., Hristova M. G., Aloe L. (2003). Metabotrophic potential of neurotrophins: implication in obesity and related diseases? Med. Sci. Monit. 9, HY19–HY21.
    1. Chaldakov G. N., Fiore M., Stankulov I. S., Manni L., Hristova M. G., Antonelli A., et al. . (2004). Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog. Brain Res. 146, 279–289. 10.1016/S0079-6123(03)46018-4
    1. Chung J.-Y., Kim M.-W., Bang M.-S., Kim M. (2013). Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise. PLoS ONE 8:e52461. 10.1371/journal.pone.0052461
    1. Church D. D., Hoffman J. R., Mangine G. T., Jajtner A. R., Townsend J. R., Beyer K. S., et al. . (2016). Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J. Appl. Physiol. 121, 123–128. 10.1152/japplphysiol.00233.2016
    1. Correia P. R., Pansani A., Machado F., Andrade M., Silva A. C., Scorza F. A., et al. . (2010). Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels. Clinics 65, 1123–1126. 10.1590/S1807-59322010001100012
    1. Dechant G., Neumann H. (2003). Neurotrophins Molecular and Cellular Biology of Neuroprotection in the CNS. New York, NY: Springer Science + Business Media.
    1. Dinoff A., Herrmann N., Swardfager W., Lanctôt K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor (BDNF) in healthy adults: a meta-analysis. Eur. J. Neurosci. 46, 1635–1646. 10.1111/ejn.13603
    1. Dmitrzak-Weglarz M., Skibinska M., Slopien A., Tyszkiewicz M., Pawlak J., Maciukiewicz M., et al. . (2013). Serum neurotrophin concentrations in polish adolescent girls with anorexia nervosa. Neuropsychobiology 67, 25–32. 10.1159/000343500
    1. Fujimura H., Altar C. A., Chen R., Nakamura T., Nakahashi T., Kambayashi J., et al. . (2002). Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb. Haemost. 87, 728–734.
    1. Gibala M. J., McGee S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc. Sport Sci. Rev. 36, 58–63. 10.1097/JES.0b013e318168ec1f
    1. Goekint M., De Pauw K., Roelands B., Njemini R., Bautmans I., Mets T., et al. . (2010). Strength training does not influence serum brain-derived neurotrophic factor. Eur. J. Appl. Physiol. 110, 285–293. 10.1007/s00421-010-1461-3
    1. Gómez-Pinilla F., Ying Z., Opazo P., Roy R., Edgerton V. (2001). Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur. J. Neurosci. 13, 1078–1084. 10.1046/j.0953-816x.2001.01484.x
    1. Graf S., Karsegard V. L., Viatte V., Maisonneuve N., Pichard C., Genton L. (2013). Comparison of three indirect calorimetry devices and three methods of gas collection: a prospective observational study. Clin. Nutr. 32, 1067–1072. 10.1016/j.clnu.2013.08.012
    1. Heinrich L., Tissot N., Hartmann D. J., Cohen R. (2010). Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. J. Immunol. Methods 352, 13–22. 10.1016/j.jim.2009.10.002
    1. Hristova M. (2013). Metabolic syndrome–From the neurotrophic hypothesis to a theory. Med. Hypothes. 81, 627–634. 10.1016/j.mehy.2013.07.018
    1. Hu D., Fry S. R., Huang J. X., Ding X., Qiu L., Pan Y., et al. . (2013). Comparison of surface plasmon resonance, resonant waveguide grating biosensing and enzyme linked immunosorbent assay (ELISA) in the evaluation of a dengue virus immunoassay. Biosensors 3, 297–311. 10.3390/bios3030297
    1. Johnson R. A., Mitchell G. S. (2003). Exercise-induced changes in hippocampal brain-derived neurotrophic factor and neurotrophin-3: effects of rat strain. Brain Res. 983, 108–114. 10.1016/S0006-8993(03)03039-7
    1. Keyvani K., Sachser N., Witte O. W., Paulus W. (2004). Gene expression profiling in the intact and injured brain following environmental enrichment. J. Neuropathol. Exp. Neurol. 63, 598–609. 10.1093/jnen/63.6.598
    1. Knaepen K., Goekint M., Heyman E. M., Meeusen R. (2010). Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Med. 40, 765–801. 10.2165/11534530-000000000-00000
    1. Krabbe K. S., Mortensen E. L., Avlund K., Pedersen A. N., Pedersen B. K., Jørgensen T., et al. . (2009). Brain-derived neurotrophic factor predicts mortality risk in older women. J. Am. Geriatr. Soc. 57, 1447–1452. 10.1111/j.1532-5415.2009.02345.x
    1. Krabbe K. S., Nielsen A. R., Krogh-Madsen R., Plomgaard P., Rasmussen P., Erikstrup C., et al. . (2007). Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50, 431–438. 10.1007/s00125-006-0537-4
    1. Kuroki K., Maenaka K. (2011). Analysis of receptor–ligand interactions by surface plasmon resonance. Immune Recept. 748, 83–106. 10.1007/978-1-61779-139-0_6
    1. Lommatzsch M., Zingler D., Schuhbaeck K., Schloetcke K., Zingler C., Schuff-Werner P., et al. . (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol. Aging 26, 115–123. 10.1016/j.neurobiolaging.2004.03.002
    1. Marfell-Jones M. J., Stewart A., De Ridder J. (2012). International Standards for Anthropometric Assessment. Wellington: International Society for the Advancement of Kinanthropometry.
    1. Marston K. J., Newton M. J., Brown B. M., Rainey-Smith S. R., Bird S., Martins R. N., et al. . (2017). Intense resistance exercise increases peripheral brain-derived neurotrophic factor. J. Sci. Med. Sport 20, 899–903. 10.1016/j.jsams.2017.03.015
    1. Matthews V., Åström M.-B., Chan M., Bruce C., Krabbe K., Prelovsek O., Mortensen O. (2009). Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418. 10.1007/s00125-009-1364-1
    1. Mercader J. M., Saus E., Agüera Z., Bayés M., Boni C., Carreras A., et al. . (2008). Association of NTRK3 and its interaction with NGF suggest an altered cross-regulation of the neurotrophin signaling pathway in eating disorders. Hum. Mol. Gen. 17, 1234–1244. 10.1093/hmg/ddn013
    1. Nonomura T., Tsuchida A., Ono-Kishino M., Nakagawa T., Taiji M., Noguchia H. (2001). Brain-derived neurotrophic factor regulates energy expenditure through the central nervous system in obese diabetic mice. Exp. Diab. Res. 2, 201–209. 10.1155/EDR.2001.201
    1. Pedersen B. K., Pedersen M., Krabbe K. S., Bruunsgaard H., Matthews V. B., Febbraio M. A. (2009). Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 94, 1153–1160. 10.1113/expphysiol.2009.048561
    1. Physical Activity Guidelines Advisory Committee (2008). Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC: US Department of Health and Human Services, A1–H14.
    1. Ramírez-Vélez R., Agredo R. A. (2012). The Fantastic instrument's validity and reliability for measuring Colombian adults' life-style. Rev. Salud Pub. 14, 226–237.
    1. Ramírez-Vélez R., Hernandez A., Castro K., Tordecilla-Sanders A., González-Ruíz K., Correa-Bautista J. E., et al. . (2016). High intensity interval-vs resistance or combined-training for improving cardiometabolic health in overweight adults (cardiometabolic hiit-rt study): study protocol for a randomised controlled trial. Trials 17:298. 10.1186/s13063-016-1422-1
    1. Rasmussen P., Brassard P., Adser H., Pedersen M. V., Leick L., Hart E., et al. . (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062–1069. 10.1113/expphysiol.2009.048512
    1. Rodríguez-Rodríguez F., Cristi-Montero C., González-Ruíz K., Correa-Bautista J. E., Ramírez-Vélez R. (2016). Bioelectrical impedance vector analysis and muscular fitness in healthy men. Nutrients 8:407. 10.3390/nu8070407
    1. Rosenthal A., Lin J. (2014). Modulation of Neurotrophin Signaling by Monoclonal Antibodies Neurotrophic Factors. Berlin; Heidelberg: Springer.
    1. Saucedo-Marquez C. M. S., Vanaudenaerde B., Troosters T., Wenderoth N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 119, 1363–1373. 10.1152/japplphysiol.00126.2015
    1. Seifert T., Brassard P., Wissenberg M., Rasmussen P., Nordby P., Stallknecht B., et al. . (2010). Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R372–R377. 10.1152/ajpregu.00525.2009
    1. Tam Y. J., Zeenathul N. A., Rezaei M. A., Mustafa N. H., Azmi M. L. M., Bahaman A. R., et al. . (2017). Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnol. Appl. Biochem. 64, 735–744. 10.1002/bab.1528
    1. Tonoli C., Heyman E., Roelands B., Buyse L., Piacentini F., Berthoin S., et al. . (2015). BDNF, IGF-I, glucose and insulin during continuous and interval exercise in type 1 diabetes. Int. J. Sports Med. 36, 955–959. 10.1055/s-0035-1548886
    1. Tonra J. R., Ono M., Liu X., Garcia K., Jackson C., Yancopoulos G. D., et al. . (1999). Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr (db)/lepr (db) mice. Diabetes 48, 588–594. 10.2337/diabetes.48.3.588
    1. Verbickas V., Kamandulis S., Snieckus A., Venckunas T., Baranauskiene N., Brazaitis M., et al. . (2017). Serum brain-derived neurotrophic factor and interleukin-6 response to high-volume mechanically demanding exercise. Muscle Nerve. 57, E46–E51. 10.1002/mus.25687
    1. Wei H., Qu H., Wang H., Ji B., Deng H. (2017). Serum brain-derived neurotrophic factor levels and sleep disorders in Chinese healthy and newly diagnosed type 2 diabetic subjects. J. Diabetes 9, 180–189. 10.1111/1753-0407.12401
    1. WHO (2000). Obesity: Preventing and Managing the Global Epidemic. World Health Organization.
    1. WHO (2004). Global Strategy on Diet, Physical Activity and Health.
    1. Wöllner K., Chen X., Kremmer E., Krämer P. (2010). Comparative surface plasmon resonance and enzyme-linked immunosorbent assay characterisation of a monoclonal antibody with N-acyl homoserine lactones. Anal. Chimica Acta 683, 113–118. 10.1016/j.aca.2010.10.015
    1. Wrann C. D., White J. P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., et al. . (2013). Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab. 18, 649–659. 10.1016/j.cmet.2013.09.008
    1. Yarrow J. F., White L. J., McCoy S. C., Borst S. E. (2010). Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci. Lett. 479, 161–165. 10.1016/j.neulet.2010.05.058

Source: PubMed

3
Abonnere