Implicit and Explicit Learning of a Sequential Postural Weight-Shifting Task in Young and Older Adults

Simone R Caljouw, Renee Veldkamp, Claudine J C Lamoth, Simone R Caljouw, Renee Veldkamp, Claudine J C Lamoth

Abstract

Sequence-specific postural motor learning in a target-directed weight-shifting task in 12 older and 12 young participants was assessed. In the implicit sequence learning condition participants performed a concurrent spatial cognitive task and in the two explicit conditions participants were required to discover the sequence order either with or without the concurrent cognitive task. Participants moved a cursor on the screen from the center location to one of the target locations projected in a semi-circle and back by shifting their center of pressure (CoP) on force plates. During the training the targets appeared in a simple fixed 5-target sequence. Plan-based control (i.e., direction of the CoP displacement in the first part of the target-directed movement) improved by anticipating the sequence order in the implicit condition but not in the explicit dual task condition. Only the young participants were able to use the explicit knowledge of the sequence structure to improve the directional error as indicated by a significant decrease in directional error over practice and an increase in directional error with sequence removal in the explicit single task condition. Time spent in the second part of the movement trajectory to stabilize the cursor on the target location improved over training in both the implicit and explicit sequence learning conditions, for both age groups. These results might indicate that an implicit motor learning method, which holds back explicit awareness of task relevant features, may be desirable for improving plan-based motor control in older adults.

Keywords: aging; implicit motor learning; older adults; postural control; sequence learning.

Figures

FIGURE 1
FIGURE 1
Description of the experimental setup. R, random block; S, Sequence block.
FIGURE 2
FIGURE 2
Illustration of the center-out movement to a presented radial target (white) and the outcome parameters directional error and homing time. The figure is based on one trial of a young subject at the start (A) and at the end (B) of a practice session. The angle (α) between the two blue lines determines the directional error. The homing time is the time it takes from leaving the dotted circle to stabilizing on the radial target (red trajectory). At the start of the experiment the subject had a larger homing time and a larger directional error than at the end of the practice session (left panel vs. right panel).
FIGURE 3
FIGURE 3
Mean value and standard-error bar for each age group on each test block showing; the absence of an aging effect at the beginning of the experiment for directional error, a slower homing-time for the older participants, general practice effects on directional error and homing-time (R-Pre vs. S-Post), and the effects of sequence removal and re-introduction (the phase between the two vertical dotted lines on the right side).

References

    1. Bennett I. J., Howard J. H., Jr., Howard D. V. (2007). Age-related differences in implicit learning of subtle third-order sequential structure. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 62 98–103. 10.1093/geronb/62.2.P98
    1. Boisgontier M. P., Beets I. A., Duysens J., Nieuwboer A., Krampe R. T., Swinnen S. P. (2013). Age-related differences in attentional cost associated with postural dual tasks: increased recruitment of generic cognitive resources in older adults. Neurosci. Biobehav. Rev. 37 1824–1837. 10.1016/j.neubiorev.2013.07.014
    1. Brooks L. R. (1967). The suppression of visualization by reading. Q. J. Exp. Psychol. 19 289–299. 10.1080/14640746708400105
    1. Brown R. M., Robertson E. M., Press D. Z. (2009). Sequence skill acquisition and off-line learning in normal aging. PLoS ONE 4:e6683 10.1371/journal.pone.0006683
    1. Caljouw S. R., van der Kamp J., Lijster M., Savelsbergh G. J. (2011). Differential effects of a visual illusion on online visual guidance in a stable environment and online adjustments to perturbations. Conscious. Cogn. 20 1135–1143. 10.1016/j.concog.2011.03.002
    1. Caljouw S. R., van der Kamp J., Savelsbergh G. J. (2006). The impact of task-constraints on the planning and control of interceptive hitting movements. Neurosci. Lett. 392 84–89. 10.1016/j.neulet.2005.08.067
    1. Castel A. D., Craik F. I. (2003). The effects of aging and divided attention on memory for item and associative information. Psychol. Aging 18 873–885. 10.1037/0882-7974.18.4.873
    1. Chambaron S., Ginhac D., Ferrel-Chapus C., Perruchet P. (2006). Implicit learning of a repeated segment in continuous tracking: a reappraisal. Q. J. Exp. Psychol. 59 845–854. 10.1080/17470210500198585
    1. Cherry K. E., Stadler M. A. (1995). Implicit learning of a nonverbal sequence in younger and older adults. Psychol. Aging 10 379–394. 10.1037/0882-7974.10.3.379
    1. Curran T. (1997). Effects of aging on implicit sequence learning: accounting for sequence structure and explicit knowledge. Psychol. Res. 60 24–41. 10.1007/BF00419678
    1. de Vries E. A., Caljouw S. R., Coppens M. J., Postema K., Verkerke G. J., Lamoth C. J. (2014). Differences between young and older adults in the control of weight shifting within the surface of support. PLoS ONE 9:e98494 10.1371/journal.pone.0098494
    1. Feeney J. J., Howard J. H., Jr., Howard D. V. (2002). Implicit learning of higher order sequences in middle age. Psychol. Aging 17 351–355. 10.1037/0882-7974.17.2.351
    1. Fitts P. M., Posner M. (1967). Human Performance. Belmont, CA: Brooks/Cole Pub. Co.
    1. Fletcher P. C., Zafiris O., Frith C. D., Honey R. A. E., Corlett P. R., Zilles K., et al. (2005). On the benefits of not trying: Brain activity and connectivity reflecting the interactions of explicit and implicit sequence learning. Cereb. Cortex 15 1002–1015. 10.1093/cercor/bhh201
    1. Frensch P. A., Miner C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Mem. Cogn. 22 95–110. 10.3758/BF03202765
    1. Gaillard V., Destrebecqz A., Michiels S., Cleeremans A. (2009). Effects of age and practice in sequence learning: a graded account of ageing, learning, and control. Eur. J. Cogn. Psychol. 21 255–282. 10.1080/09541440802257423
    1. Ghilardi M. F., Carbon M., Silvestri G., Dhawan V., Tagliati M., Bressman S., et al. (2003). Impaired sequence learning in carriers of the DYT1 dystonia mutation. Ann. Neurol. 54 102–109. 10.1002/ana.10610
    1. Ghilardi M. F., Moisello C., Silvestri G., Ghez C., Krakauer J. W. (2009). Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently. J. Neurophysiol. 101 2218–2229. 10.1152/jn.01138.2007
    1. Glover S. (2004). Separate visual representations in the planning and control of action. Behav. Brain Sci. 27 3–24. 10.1017/S0140525X04000020
    1. Hedden T., Gabrieli J. D. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5 87–96. 10.1038/nrn1323
    1. Howard D. V., Howard J. H., Jr. (2001). When it does hurt to try: adult age differences in the effects of instructions on implicit pattern learning. Psychon. Bull. Rev 8 798–805. 10.3758/BF03196220
    1. Howard D. V., Howard J. H., Jr., Japikse K., DiYanni C., Thompson A., Somberg R. (2004). Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychol. Aging 19 79–92. 10.1037/0882-7974.19.1.79
    1. Howard J. H., Howard D. V. (2013). Aging mind and brain: is implicit learning spared in healthy aging? Front. Psychol. 4:817 10.3389/fpsyg.2013.00817
    1. Huxhold O., Li S. C., Schmiedek F., Lindenberger U. (2006). Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 69 294–305. 10.1016/j.brainresbull.2006.01.002
    1. Janacsek K., Nemeth D. (2012). Predicting the future: from implicit learning to consolidation. Int. J. Psychophysiol. 83 213–221. 10.1016/j.ijpsycho.2011.11.012
    1. Jimenez L., Vazquez G. A. (2005). Sequence learning under dual-task conditions: alternatives to a resource-based account. Psychol. Res. 69 352–368. 10.1007/s00426-004-0210-9
    1. Jongman V., Lamoth C. J., van Keeken H., Caljouw S. R. (2012). Postural control of elderly: moving to predictable and unpredictable targets. Stud. Health Technol. Inform. 181 93–97.
    1. King B. R., Fogel S. M., Albouy G., Doyon J. (2013). Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Front. Hum. Neurosci. 7:142 10.3389/fnhum.2013.00142
    1. Lamoth C. J., van Lummel R. C., Beek P. J. (2009). Athletic skill level is reflected in body sway: a test case for accelometry in combination with stochastic dynamics. Gait Posture 29 546–551. 10.1016/j.gaitpost.2008.12.006
    1. Laughton C. A., Slavin M., Katdare K., Nolan L., Bean J. F., Kerrigan D. C., et al. (2003). Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture 18 101–108. 10.1016/S0966-6362(02)00200-X
    1. Lovden M., Schaefer S., Pohlmeyer A. E., Lindenberger U. (2008). Walking variability and working-memory load in aging: a dual-process account relating cognitive control to motor control performance. J. Gerontol. B Psychol. Sci. Soc. Sci. 63 121–128. 10.1093/geronb/63.3.P121
    1. Masters R. S. (1992). Knowledge knerves and know-how. The role of explicit versus implicit knowledge in the breakdown of complex motor skill under pressure. Br. J. Psychol. 83 343–358.
    1. Moisello C., Avanzino L., Tacchino A., Ruggeri P., Ghilardi M. F., Bove M. (2011). Motor sequence learning: acquisition of explicit knowledge is concomitant to changes in motor strategy of finger opposition movements. Brain Res. Bull. 85 104–108. 10.1016/j.brainresbull.2011.03.023
    1. Moisello C., Crupi D., Tunik E., Quartarone A., Bove M., Tononi G., et al. (2009). The serial reaction time task revisited: a study on motor sequence learning with an arm-reaching task. Exp. Brain Res. 194 143–155. 10.1007/s00221-008-1681-5
    1. Nejati V., Garusi Farshi M. T., Ashayeri H., Aghdasi M. T. (2008). Dual task interference in implicit sequence learning by young and old adults. Int. J. Geriatr. Psychiatry 23 801–804. 10.1002/gps.1976
    1. Nissen M. J., Bullemer P. (1987). Attentional requirements of learning: evidence from performance measures. Cogn. Psychol. 19 1 10.1016/0010-0285(87)90002-8
    1. Oostwoud Wijdenes L., Brenner E., Smeets J. (2016). Exposing sequence learning in a double-step task. Exp. Brain Res. 234 1701–1712. 10.1007/s00221-016-4566-z
    1. Orrell A. J., Eves F. F., Masters R. S. (2006). Implicit motor learning of a balancing task. Gait Posture 23 9–16. 10.1016/j.gaitpost.2004.11.010
    1. Park H. L., O’Connell J. E., Thomson R. G. (2003). A systematic review of cognitive decline in the general elderly population. Int. J. Geriatr. Psychiatry 18 1121–1134. 10.1002/gps.1023
    1. Reber A. S. (1992). The cognitive unconscious: an evolutionary perspective. Conscious. Cogn. 1 93–133. 10.1016/1053-8100(92)90051-B
    1. Rieckmann A., Backman L. (2009). Implicit learning in aging: extant patterns and new directions. Neuropsychol. Rev. 19 490–503. 10.1007/s11065-009-9117-y
    1. Shea C. H., Park J. H., Braden H. W. (2006). Age-related effects in sequential motor learning. Phys. Ther. 86 478–488.
    1. Shea C. H., Wulf G., Whitacre C. A., Park J. H. (2001). Surfing the implicit wave. Q. J. Exp. Psychol. A 54 841–862. 10.1080/713755993
    1. Simon J. R., Howard J. H., Jr., Howard D. V. (2011). Age differences in implicit learning of probabilistic unstructured sequences. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 66 32–38. 10.1093/geronb/gbq066
    1. Song S., Marks B., Howard J. H., Jr., Howard D. V. (2009). Evidence for parallel explicit and implicit sequence learning systems in older adults. Behav. Brain Res. 196 328–332. 10.1016/j.bbr.2008.09.022
    1. Stanley J., Krakauer J. W. (2013). Motor skill depends on knowledge of facts. Front. Hum. Neurosci. 7:503 10.3389/fnhum.2013.00503
    1. Sturnieks D. L., St George R., Lord S. R. (2008). Balance disorders in the elderly. Neurophysiol. Clin. 38 467–478. 10.1016/j.neucli.2008.09.001
    1. Van Ooteghem K., Frank J. S., Allard F., Buchanan J. J., Oates A. R., Horak F. B. (2008). Compensatory postural adaptations during continuous, variable amplitude perturbations reveal generalized rather than sequence-specific learning. Exp. Brain Res. 187 603–611. 10.1007/s00221-008-1329-5
    1. Van Ooteghem K., Frank J. S., Allard F., Horak F. B. (2010). Aging does not affect generalized postural motor learning in response to variable amplitude oscillations of the support surface. Exp. Brain Res. 204 505–514. 10.1007/s00221-010-2316-1
    1. Vandenbossche J., Coomans D., Homblé K., Deroost N. (2014). The effect of cognitive aging on implicit sequence learning and dual tasking. Front. Psychol. 5:154 10.3389/fpsyg.2014.00154
    1. Verneau M., van der Kamp J., Savelsbergh G. J., de Looze M. P. (2014). Age and time effects on implicit and explicit learning. Exp. Aging Res. 40 477–511. 10.1080/0361073X.2014.926778
    1. Verwey W. B. (2010). Diminished motor skill development in elderly: indications for limited motor chunk use. Acta Psychol. 134 206–214. 10.1016/j.actpsy.2010.02.001
    1. Willingham D. B., Goedert-Eschmann K. (1999). The relation between implicit and explicit learning: evidence for parallel development. Psychol. Sci 10 531–534. 10.1111/1467-9280.00201
    1. Willingham D. B., Salidis J., Gabrieli J. D. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. J. Neurophysiol. 88 1451–1460. 10.1152/jn.00461.2001
    1. Wong A. L., Lindquist M. A., Haith A. M., Krakauer J. W. (2015). Explicit knowledge enhances motor vigor and performance: motivation versus practice in sequence tasks. J. Neurophysiol. 114 219–232. 10.1152/jn.00218.2015
    1. Zatsiorsky V. M., Duarte M. (2000). Rambling and trembling in quiet standing. Motor Control 4 185–200.

Source: PubMed

3
Abonnere