Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study

Kristian Kofoed, Ove Andersen, Gitte Kronborg, Michael Tvede, Janne Petersen, Jesper Eugen-Olsen, Klaus Larsen, Kristian Kofoed, Ove Andersen, Gitte Kronborg, Michael Tvede, Janne Petersen, Jesper Eugen-Olsen, Klaus Larsen

Abstract

Introduction: Accurate and timely diagnosis of community-acquired bacterial infections in patients with systemic inflammation remains challenging both for clinician and laboratory. Combinations of markers, as opposed to single ones, may improve diagnosis and thereby survival. We therefore compared the diagnostic characteristics of novel and routinely used biomarkers of sepsis alone and in combination.

Methods: This prospective cohort study included patients with systemic inflammatory response syndrome who were suspected of having community-acquired infections. It was conducted in a medical emergency department and department of infectious diseases at a university hospital. A multiplex immunoassay measuring soluble urokinase-type plasminogen activator (suPAR) and soluble triggering receptor expressed on myeloid cells (sTREM)-1 and macrophage migration inhibitory factor (MIF) was used in parallel with standard measurements of C-reactive protein (CRP), procalcitonin (PCT), and neutrophils. Two composite markers were constructed - one including a linear combination of the three best performing markers and another including all six - and the area under the receiver operating characteristic curve (AUC) was used to compare their performance and those of the individual markers.

Results: A total of 151 patients were eligible for analysis. Of these, 96 had bacterial infections. The AUCs for detection of a bacterial cause of inflammation were 0.50 (95% confidence interval [CI] 0.40 to 0.60) for suPAR, 0.61 (95% CI 0.52 to 0.71) for sTREM-1, 0.63 (95% CI 0.53 to 0.72) for MIF, 0.72 (95% CI 0.63 to 0.79) for PCT, 0.74 (95% CI 0.66 to 0.81) for neutrophil count, 0.81 (95% CI 0.73 to 0.86) for CRP, 0.84 (95% CI 0.71 to 0.91) for the composite three-marker test, and 0.88 (95% CI 0.81 to 0.92) for the composite six-marker test. The AUC of the six-marker test was significantly greater than that of the single markers.

Conclusion: Combining information from several markers improves diagnostic accuracy in detecting bacterial versus nonbacterial causes of inflammation. Measurements of suPAR, sTREM-1 and MIF had limited value as single markers, whereas PCT and CRP exhibited acceptable diagnostic characteristics.

Trial registration: ClinicalTrials.gov NCT00389337.

Figures

Figure 1
Figure 1
Flowchart of the patients included in the study. Flowchart describing the number of patients included in the study, the reasons for subsequent exclusions, the final diagnoses of the patients, and the ability C-reactive protein (CRP), procalcitonin (PCT), and the three-marker and six-marker combined tests to correctly diagnose patients as having bacterial infection. Optimal cutoffs for bacterial infection (determined by Youdens Index) were used for all four markers. SIRS, systemic inflammatory response syndrome.
Figure 2
Figure 2
Plasma concentrations of the markers. Shown are individual admission plasma concentrations of (a) C-reactive protein (CRP), (b) procalcitonin (PCT), (c) neutrophil count, (d) soluble urokinase-type plasminogen activator receptor (suPAR), (e) soluble triggering receptor expressed on myeloid cells (sTREM)-1 and (f) macrophage migration inhibitory factor (MIF) in patients with no infection (circle), bacterial (triangle, apex up), viral (triangle, apex down), or parasitic infection (square). Bars represent the medians of the concentrations.
Figure 3
Figure 3
ROC curves comparing markers' ability to detect bacterial infections in patients with systemic inflammation. Receiver operating characteristic (ROC) curves comparing soluble urokinase-type plasminogen activator receptor (suPAR), soluble triggering receptor expressed on myeloid cells (sTREM)-1, macrophage migration inhibitory factor (MIF), neutrophil count, procalcitonin (PCT), C-reactive protein (CRP), and the combined three-marker and six-marker tests for detection of bacterial versus nonbacterial causes of systemic inflammation.

References

    1. Alberti C, Brun-Buisson C, Goodman SV, Guidici D, Granton J, Moreno R, Smithies M, Thomas O, Artigas A, Le Gall JR. Influence of systemic inflammatory response syndrome and sepsis on outcome of critically ill infected patients. Am J Respir Crit Care Med. 2003;168:77–84. doi: 10.1164/rccm.200208-785OC.
    1. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, Parsonnet J, Panzer R, Orav EJ, Snydman DR, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA. 1997;278:234–240. doi: 10.1001/jama.278.3.234.
    1. Flaatten H. Epidemiology of sepsis in Norway in 1999. Crit Care. 2004;8:R180–R184. doi: 10.1186/cc2867.
    1. Jaimes F, Arango C, Ruiz G, Cuervo J, Botero J, Velez G, Upegui N, Machado F. Predicting bacteremia at the bedside. Clin Infect Dis. 2004;38:357–362. doi: 10.1086/380967.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–1655.
    1. Carrigan SD, Scott G, Tabrizian M. Toward resolving the challenges of sepsis diagnosis. Clin Chem. 2004;50:1301–1314. doi: 10.1373/clinchem.2004.032144.
    1. Meisner M. Biomarkers of sepsis: clinically useful? Curr Opin Crit Care. 2005;11:473–480. doi: 10.1097/01.ccx.0000176694.92883.ce.
    1. Mitaka C. Clinical laboratory differentiation of infectious versus non-infectious systemic inflammatory response syndrome. Clin Chim Acta. 2005;351:17–29. doi: 10.1016/j.cccn.2004.08.018.
    1. Marshall JC, Vincent JL, Fink MP, Cook DJ, Rubenfeld G, Foster D, Fisher CJ, Jr, Faist E, Reinhart K. Measures, markers, and mediators: toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25–26, 2000. Crit Care Med. 2003;31:1560–1567. doi: 10.1097/01.CCM.0000065186.67848.3A.
    1. Colonna M, Facchetti F. TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses. J Infect Dis. 2003;187 Suppl 2 :S397–401. doi: 10.1086/374754.
    1. Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350:451–458. doi: 10.1056/NEJMoa031544.
    1. Gibot S, Kolopp-Sarda MN, Bene MC, Cravoisy A, Levy B, Faure GC, Bollaert PE. Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med. 2004;141:9–15.
    1. Eugen-Olsen J, Gustafson P, Sidenius N, Fischer TK, Parner J, Aaby P, Gomes VF, Lisse I. The serum level of soluble urokinase receptor is elevated in tuberculosis patients and predicts mortality during treatment: a community study from Guinea-Bissau. Int J Tuberc Lung Dis. 2002;6:686–692.
    1. Wittenhagen P, Kronborg G, Weis N, Nielsen H, Obel N, Pedersen SS, Eugen-Olsen J. The plasma level of soluble urokinase receptor is elevated in patients with Streptococcus pneumoniae bacteraemia and predicts mortality. Clin Microbiol Infect. 2004;10:409–415. doi: 10.1111/j.1469-0691.2004.00850.x.
    1. Mendonca-Filho HT, Gomes GS, Nogueira PM, Fernandes MA, Tura BR, Santos M, Castro-Faria-Neto HC. Macrophage migration inhibitory factor is associated with positive cultures in patients with sepsis after cardiac surgery. Shock. 2005;24:313–317. doi: 10.1097/01.shk.0000180622.52058.3a.
    1. Bozza FA, Gomes RN, Japiassu AM, Soares M, Castro-Faria-Neto HC, Bozza PT, Bozza MT. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock. 2004;22:309–313. doi: 10.1097/01.shk.0000140305.01641.c8.
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–2963. doi: 10.1001/jama.270.24.2957.
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710.
    1. Sepsis: Prognosis and Evaluation of Early Diagnosis and Intervention (SPEEDI Study)
    1. Kofoed K, Schneider UV, Scheel T, Andersen O, Eugen-Olsen J. Development and validation of a multiplex add-on assay for sepsis biomarkers using xMAP technology. Clin Chem. 2006;52:1284–1293. doi: 10.1373/clinchem.2006.067595.
    1. Chan YL, Tseng CP, Tsay PK, Chang SS, Chiu TF, Chen JC. Procalcitonin as a marker of bacterial infection in the emergency department: an observational study. Crit Care. 2004;8:R12–R20. doi: 10.1186/cc2396.
    1. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, Tamm M, Muller B. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet. 2004;363:600–607. doi: 10.1016/S0140-6736(04)15591-8.
    1. Davis BH, Bigelow NC. Comparison of neutrophil CD64 expression, manual myeloid immaturity counts, and automated hematology analyzer flags as indicators of infection or sepsis. Lab Hematol. 2005;11:137–147. doi: 10.1532/LH96.04077.
    1. Gaini S, Koldkjaer OG, Pedersen C, Pedersen SS. Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: a prospective study. Crit Care. 2006;10:R53. doi: 10.1186/cc4866.
    1. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>;2-3.
    1. Xiong C, McKeel DW, Jr, Miller JP, Morris JC. Combining correlated diagnostic tests: application to neuropathologic diagnosis of Alzheimer's disease. Med Decis Making. 2004;24:659–669. doi: 10.1177/0272989X04271046.
    1. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–843.
    1. McIntosh MW, Pepe MS. Combining several screening tests: optimality of the risk score. Biometrics. 2002;58:657–664. doi: 10.1111/j.0006-341X.2002.00657.x.
    1. Su JQ, Liu JS. Linear combinations of multiple diagnostic markers. J Am Stat Assoc. 1993;88:1350–1355. doi: 10.2307/2291276.
    1. Bates DW, Sands K, Miller E, Lanken PN, Hibberd PL, Graman PS, Schwartz JS, Kahn K, Snydman DR, Parsonnet J, et al. Predicting bacteremia in patients with sepsis syndrome. Academic Medical Center Consortium Sepsis Project Working Group. J Infect Dis. 1997;176:1538–1551.
    1. Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, Grau GE, Vadas L, Pugin J. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. 2001;164:396–402.
    1. Paul M, Andreassen S, Nielsen AD, Tacconelli E, Almanasreh N, Fraser A, Yahav D, Ram R, Leibovici L. Prediction of bacteremia using TREAT, a computerized decision-support system. Clin Infect Dis. 2006;42:1274–1282. doi: 10.1086/503034.
    1. Pepe MS, Thompson ML. Combining diagnostic test results to increase accuracy. Biostatistics. 2000;1:123–140. doi: 10.1093/biostatistics/1.2.123.
    1. Peres BD, Melot C, Lopes FF, Vincent JL. Infection Probability Score (IPS): A method to help assess the probability of infection in critically ill patients. Crit Care Med. 2003;31:2579–2584. doi: 10.1097/01.CCM.0000094223.92746.56.
    1. Richeldi L, Mariani M, Losi M, Maselli F, Corbetta L, Buonsanti C, Colonna M, Sinigaglia F, Panina-Bordignon P, Fabbri LM. Triggering receptor expressed on myeloid cells: role in the diagnosis of lung infections. Eur Respir J. 2004;24:247–250. doi: 10.1183/09031936.04.00014204.
    1. Hausfater P, Garric S, Ayed SB, Rosenheim M, Bernard M, Riou B. Usefulness of procalcitonin as a marker of systemic infection in emergency department patients: a prospective study. Clin Infect Dis. 2002;34:895–901. doi: 10.1086/339198.
    1. Munoz P, Simarro N, Rivera M, Alonso R, Alcala L, Bouza E. Evaluation of procalcitonin as a marker of infection in a nonselected sample of febrile hospitalized patients. Diagn Microbiol Infect Dis. 2004;49:237–241. doi: 10.1016/j.diagmicrobio.2004.04.002.
    1. Selberg O, Hecker H, Martin M, Klos A, Bautsch W, Kohl J. Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Crit Care Med. 2000;28:2793–2798. doi: 10.1097/00003246-200008000-00019.
    1. Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39:206–217. doi: 10.1086/421997.
    1. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med. 2006;34:1996–2003. doi: 10.1097/01.CCM.0000226413.54364.36.
    1. Muller B, Becker KL, Schachinger H, Rickenbacher PR, Huber PR, Zimmerli W, Ritz R. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med. 2000;28:977–983. doi: 10.1097/00003246-200004000-00011.
    1. BalcI C, Sungurtekin H, Gurses E, Sungurtekin U, Kaptanoglu B. Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit. Crit Care. 2003;7:85–90. doi: 10.1186/cc1843.
    1. Phua J, Koay ES, Zhang DH, Tai LK, Boo XL, Lim KC, Lim TK. Soluble triggering receptor expressed on myeloid cells-1 in acute respiratory infections. Eur Respir J. 2006;28:695–702. doi: 10.1183/09031936.06.00005606.
    1. Tzivras M, Koussoulas V, Giamarellos-Bourboulis EJ, Tzivras D, Tsaganos T, Koutoukas P, Giamarellou H, Archimandritis A. Role of soluble triggering receptor expressed on myeloid cells in inflammatory bowel disease. World J Gastroenterol. 2006;12:3416–3419.
    1. Murakami Y, Akahoshi T, Hayashi I, Endo H, Kawai S, Inoue M, Kondo H, Kitasato H. Induction of triggering receptor expressed on myeloid cells 1 in murine resident peritoneal macrophages by monosodium urate monohydrate crystals. Arthritis Rheum. 2006;54:455–462. doi: 10.1002/art.21633.
    1. Chirouze C, Schuhmacher H, Rabaud C, Gil H, Khayat N, Estavoyer JM, May T, Hoen B. Low serum procalcitonin level accurately predicts the absence of bacteremia in adult patients with acute fever. Clin Infect Dis. 2002;35:156–161. doi: 10.1086/341023.
    1. Ugarte H, Silva E, Mercan D, De Mendonca A, Vincent JL. Procalcitonin used as a marker of infection in the intensive care unit. Crit Care Med. 1999;27:498–504. doi: 10.1097/00003246-199903000-00024.

Source: PubMed

3
Abonnere