A20 upregulation during treated HIV disease is associated with intestinal epithelial cell recovery and function

Avantika S Chitre, Michael G Kattah, Yenny Y Rosli, Montha Pao, Monika Deswal, Steven G Deeks, Peter W Hunt, Mohamed Abdel-Mohsen, Luis J Montaner, Charles C Kim, Averil Ma, Ma Somsouk, Joseph M McCune, Avantika S Chitre, Michael G Kattah, Yenny Y Rosli, Montha Pao, Monika Deswal, Steven G Deeks, Peter W Hunt, Mohamed Abdel-Mohsen, Luis J Montaner, Charles C Kim, Averil Ma, Ma Somsouk, Joseph M McCune

Abstract

ClinicalTrials.gov Clinical Trial NCT00594880.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig 1. IEC expression pattern from ART-treated…
Fig 1. IEC expression pattern from ART-treated participants is consistent with upregulated A20 (TNFAIP3) levels.
(A) Pairwise comparison of IEC gene expression between viremic and ART-treated participants by RNAseq as analyzed by DESeq2 workflow. Each dot represents a sequenced gene. The right side of the plot indicates relative enrichment in ART-treated relative to viremic individuals, whereas the left side indicates the inverse, enrichment in viremics relative to ART-treated participants. Purple signifies greater than two-fold change expression relative to the comparator in either direction. Red indicates a significant p-value (<0.05) after false discovery rate correction. Green indicates fulfillment of both of these criteria. Genes of particular interest are highlighted in bold. (B) Spearman correlation of A20 transcript levels and NFKBIA expression, as measured by RNAseq, in ART-treated participants (n = 19). Spearman correlation of A20 mRNA or NFKBIA gene expression, as indicated on the x-axis, to transcript levels of (C) proliferation-associated β-catenin, CTNNB1, or the tight junction genes (D) CLDN4 and (E) TJP1.
Fig 2
Fig 2
Intestinal epithelial A20 is downregulated after exposure to IFNα (A) Protein levels of A20, measured by western blot, in murine organoids after treatment with indicated dose of IFNα for 48 hours. (B) Quantification of A20 levels normalized to GAPDH in three independent experiments conducted as in (a). Statistical significance was assessed using a t-test. * P<0.05, **P≤0.01, ***P≤0.001.
Fig 3. A20 deletion is associated with…
Fig 3. A20 deletion is associated with enhanced IFNγ-mediated inhibition of tight junction and mucin gene expression.
(A) Western blot for A20 protein levels in A20FL/FL villin-ERCre+ or Cre- organoids after treatment with 4-hydroxytamoxifen (4OHT) for 24 hours. Gene expression by qPCR of (B) the proinflammatory chemokines Cxcl1 and Cxcl2, (C) the mucins Muc2, Muc4, Muc13, and Muc1, (D) the tight junction proteins Tjp1, Ocln, and Cldn4, and (E) the antimicrobial peptide Defb1 after stimulation with IFNγ for 12 hours. Statistical significance within Cre+ and Cre- conditions was first tested by ANOVA and specific pairwise comparisons were made using t-tests corrected for multiple comparisons by the Scheffe method (see also S1 Table). Stars above each column indicate statistical significance relative to the media condition. Bars with stars indicate statistically significant differences between the two indicated conditions. * P<0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001.
Fig 4. Deletion of A20 enhances the…
Fig 4. Deletion of A20 enhances the proinflammatory effects of IL-17A.
Gene expression of (A) Lcn2, (B) Cxcl1, (C) Cxcl2, (D) Muc1 by qPCR of organoid cultures after 24 hours of 4OHT treatment and/or a 12 hour stimulation with recombinant IL-17A. Cre+ or Cre- conditions were tested separately by ANOVA. Pairwise comparisons were completed post-hoc using t-tests and correcting for multiple comparisons by the Scheffe method (see also S2 Table). Stars above each column indicate statistical significance relative to the media condition of the same organoid line (Cre+ or Cre-) by a t-test. Bars with stars indicate statistically significant differences between the two indicated conditions. **P≤0.01, ***P≤0.001, ****P≤0.0001.
Fig 5. A20 deletion enhances the cytotoxic…
Fig 5. A20 deletion enhances the cytotoxic effects of IFNα and IFNγ.
(A) Quantification of cell viability by CellTiter Glo 3D assay in organoid cultures after stimulation with three doses of rIFNγ, rIFNα, or rIL-17A for 24 hours. Significance of Cre+ or Cre- was assessed separately by ANOVA. Stars above data points represent statistical significance of cytokine treatment relative to the media control within either the Cre+ (red) or Cre- (black) line after post-hoc comparisons were made by t-test, correcting for multiple comparisons by Scheffe method. Stars above brackets indicate a significant difference between A20-sufficient (Cre-, black) and A20-deficient (Cre+, red) culture within the indicated media condition by t-test. *P<0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. (B) Representative confocal images of propidium iodide (PI)-stained organoids treated for 24 hours with 4OHT followed by 10 ng/ml of indicated cytokine for 24 hours. Two organoids representing the range of PI staining are shown for each condition.
Fig 6. Five week pegylated-IFNα2a immunotherapy of…
Fig 6. Five week pegylated-IFNα2a immunotherapy of ART-suppressed HIV-infected individuals leads to reduction in A20 expression.
(A) Schematic showing duration and frequency of pegylated-IFNα2a administration in participants. Transcript levels of (B) IFN-stimulated gene ISG15 and (C) A20 in PBMCs at baseline and after five weeks of IFNα treatment as assessed by qPCR. Statistical significance was determined by paired t-test. * P<0.05, ****P≤0.0001.
Fig 7. A20 modulation of epithelial function…
Fig 7. A20 modulation of epithelial function during HIV infection and treatment.
Model demonstrating proposed relationship of A20 and relevant cytokines (Type I IFNs, IFNγ, and IL-17A) in the context of untreated (viremic) (left) and ART-treated (right) HIV disease.

References

    1. Bosinger SE, Utay NS. Type I interferon: Understanding its role in HIV pathogenesis and therapy. Curr HIV/AIDS Rep. 2015; 12: 41–53. doi:
    1. Roff SR, Noon-Song EN, Yamamoto JK. The significance of interferon-γ in HIV-1 pathogenesis, therapy, and prophylaxis. Front Immunol. 2014; 4: 498 doi:
    1. Byakwaga H, Boum Y, Huang Y, Muzoora C, Kembabazi A, Weiser SD, et al. The kynurenine pathway of tryptophan catabolism, CD4+ T-cell recovery, and mortality among HIV-infected Ugandans initiating antiretroviral therapy. J Infect Dis. 2014; 210: 383–391. doi:
    1. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis. 2014; 210: 1228–1238. doi:
    1. Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis. 2014; 210: 1248–1259. doi:
    1. Lee S, Byakwaga H, Boum Y, Burdo TH, Williams KC, Lederman MM, et al. Immunologic pathways that predict mortality in HIV-infected Ugandans initiating antiretroviral therapy. J Infect Dis. 2017; 215(8): 1270–1274. doi:
    1. Hunt PW. Role of immune activation in HIV pathogenesis. Curr HIV/AIDS Rep. 2007; 4: 42–47.
    1. Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Adv Immunol. 2013; 119: 51–83. doi:
    1. Hunt PW, Cao L, Muzoora C, Ssewanyana I, Bennett J, Emenyonu N, et al. Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. AIDS. 2011; 25: 2123–2131. doi:
    1. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis. 1999; 179: 859–870. doi:
    1. Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, Deeks SG. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis. 2003; 187: 1534–1543. doi:
    1. Kelley CF, Kitchen CMR, Hunt PW, Rodriguez B, Hecht FM, Kitahata M, et al. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin Infect Dis. 2009; 48: 787–794. doi:
    1. Shacklett BL, Anton PA. HIV infection and gut mucosal immune function: Updates on pathogenesis with implications for management and intervention. Curr Infect Dis Rep. 2010; 12: 19–27. doi:
    1. Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, Duan L, et al. Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis. 2010; 202; 1553–1561.
    1. Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. 2008; 112: 2826–2835. doi:
    1. Favre D, Lederer S, Kanwar B, Ma ZM, Proll S, Kasakow Z, et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 2009; 5: e1000295 doi:
    1. Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med. 2010; 2: 32ra36 doi:
    1. Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med. 2008; 14: 421–428. doi:
    1. Cua DJ, Tato CM. Innate Il-17-producing cells: The sentinels of the immune system. Nat Rev Immunol. 2010; 10: 479–489. doi:
    1. Peterson LW, Artis D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014; 14: 141–153. doi:
    1. Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, et al. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut. 2009; 58: 220–227. doi:
    1. Epple HJ, Allers K, Tröger H, Kühl A, Erben U, Fromm M, et al. Acute HIV infection induces mucosal infiltration with CD4+ and CD8+ T cells, epithelial apoptosis, and a mucosal barrier defect. Gastroenterology. 2010; 139: 1289–1300. doi:
    1. Kim CJ, Nazli A, Rojas OL, Chege D, Alidina Z, Huibner S, et al. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol.2012; 5: 670–680. doi:
    1. Somsouk M, Estes JD, Deleage C, Dunham RM, Albright R, Inadomi JM, et al. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS. 2015; 29: 43–51. doi:
    1. Epple HJ, Zeitz M. HIV infection and the intestinal mucosal barrier. Ann N Y Acad Sci. 2012; 1258: 19–24. doi:
    1. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006; 12: 1365–1371. doi:
    1. Fox CH, Kotler D, Tierney A, Wilson CS, Fauci AS. Detection of HIV-1 RNA in the lamina propria of patients with AIDS and gastrointestinal disease. J Infect Dis. 1989; 159: 467–471.
    1. Bomsel M, David V. Mucosal gatekeepers: selecting HIV viruses for early infection. Nat Med. 2002; 8: 114–116. doi:
    1. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000; 289: 2350–2354.
    1. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004; 430: 694–699. doi:
    1. Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappa B signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 2010; 327: 1135–1139. doi:
    1. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Ann Rev Immunol. 1994; 12: 141–179.
    1. Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP, et al. beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell. 2002; 2: 323–4.
    1. Kolodziej LE, Lodolce JP, Chang JE, Schneider JR, Grimm WA, Bartulis SJ, et al. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS One. 2011; 6: e26352 doi:
    1. Kreuzer KA, Dayer JM, Rockstroh JK, Sauerbruch T, Spengler U. The IL-1 system in HIV infection: peripheral concentrations of Il-1beta, IL-1 receptor antagonist and soluble IL-1 receptor type II. Clin Exp Immunol. 1997; 109: 54–58. doi:
    1. Hu J, Wang G, Liu X, Zhou L, Jiang M, Yang L. A20 is critical for the induction of Pam3CSK4-tolerance in monocytic THP-1 cells. PloS One. 2014; 9: e87528 doi:
    1. Hirao LA, Grishina I, Bourry O, Hu WK, Somrit M, Sankaran-Walters S, et al. Early mucosal sensing of SIV infection by Paneth cells induces IL-1β production and initiates gut epithelial disruption. PLoS Pathog. 2014; 10: e1004311 doi:
    1. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol. 2004; 5: 1052–1060. doi:
    1. Roux-Lombard P, Modoux C, Cruchaud A, Dayer JM. Purified blood monocytes from HIV 1-infected patients produce high levels of TNF alpha and IL-1. Clin Immunol Immunopathol. 1989; 50: 374–384.
    1. Ma L, Zhou Y, Zhang Y, Li Y, Guo Y, He Y, et al. Role of A20 in interferon-α-mediated functional restoration of myeloid dendritic cells in patients with chronic hepatitis C. Immunology. 2014; 143: 670–678. doi:
    1. Benlahrech A, Patterson S. HIV-1 infection and induction of interferon alpha in plasmacytoid dendritic cells. Curr Opin HIV AIDS. 2011; 6: 373–378. doi:
    1. Sato T, Clevers H. Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol. 2013; 945: 319–328. doi:
    1. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016; 18(3): 246–254. doi:
    1. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345(6194): 1247125 doi:
    1. Peretz Y, Alter G, Boisvert MP, Hatzakis G, Tsoukas CM, Bernard NF. Human immunodeficiency virus (HIV)-specific gamma interferon secretion directed against all expressed HIV genes: relationship to rate of CD4 decline. J Virol. 2005; 79: 4908–4917. doi:
    1. Felker A, Nieuwenhuize S, Dolbois A, Blazkova K, Hess C, et al. In vivo performance and properties of tamoxifen metabolites for CreERT2 control. PLoS One. 2016; 11: e0152989 doi:
    1. Takahashi H, Jin C, Rajabi H, Pitroda S, Alam M, Ahmad R, et al. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene. 2015; 34: 5187–5197. doi:
    1. Chen H, Fang Y, Li W, Orlando RC, Shaheen N, Chen XL. NFkB and Nrf2 in esophageal epithelial barrier function. Tissue Barriers. 2013; 1: e27463 doi:
    1. Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal. 2013; 6: ra44 doi:
    1. Chassaing B, Srinivasan G, Delgado MA, Young AN, Gewirtz AT, Vijay-Kumar M. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS One. 2012; 7: e44328 doi:
    1. Nava P, Koch S, Laukoetter MG, Lee WY, Kolegraff K, Capaldo CT, et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity. 2010; 32(3): 392–402. doi:
    1. Ito R, Shin-Ya M, Kishida T, Urano A, Takada R, Sakagami J, et al. Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin Exp Immunol. 2006; 146(2): 330–338. doi:
    1. Capaldo CT, Beeman N, Hilgarth RS, Nava P, Louis NA, Naschberger E, et al. IFN-γ and TNF-α-induced GBP-1 inhibits epithelial cell proliferation through suppression of β-catenin/TCF signaling. Mucosal Immunol. 2012; 5: 681–690. doi:
    1. Azzoni L, Foulkes AS, Papasavvas E, Mexas AM, Lynn KM, et al. Pegylated Interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis. 2013; 207(2): 213–222. doi:
    1. Sen GC, Sarkar SN. The inteferon-stimulated genes: targets of direct signaling by interferons, double-stranded RNA, and viruses. Curr Top Microbiol Immunol. 2007; 316: 233–250.
    1. Sankaran S, George MD, Reay E, Guadalupe M, Flamm J, Prindiville T, Dandekar S. Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J Virol. 2008; 82: 538–545. doi:
    1. Del Cornó M, Gauzzi MC, Penna G, Belardelli F, Adorini L, Gessani S. Human immunodeficiency virus type 1 gp120 and other activation stimuli are highly effective in triggering alpha interferon and CC chemokine production in circulating plasmacytoid but not myeloid dendritic cells. J Virol. 2005; 79(19): 12597–12601. doi:
    1. O'Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-α-producing and partially matured phenotype. J Clin Invest. 2011; 121(3): 1088–1101. doi:
    1. O'Brien M, Manches O, Bhardwaj N. Plasmacytoid dendritic cells in HIV infection. Adv Exp Med Biol. 2013; 762: 71–107. doi:
    1. McGuire VA, Rosner D, Ananieva O, Ross EA, Elcombe SE, et al. Beta interferon production is regulated by p38 mitogen-activated protein kinase in macrophages via both MSK1/2- and tristetraprolin-dependent pathways. Mol Cell Biol. 2016; 37(1): e00454–16. doi:
    1. Patro SC, Azzoni L, Joseph J, Fair MG, Sierra-Madero JG, et al. Antiretroviral therapy in HIV-1 infected individuals with CD4 count below 100 cells/mm3 results in differential recovery of monocyte activation. J Leukoc Biol. 2016; 100(1):223–231. doi:
    1. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011; 17(12): 1585–1593. doi:
    1. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RB, Broadhurst MJ, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013; 5(193): 193ra91.
    1. Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014; 7(4): 983–994. doi:
    1. Ma A, Malynn BA. A20: Linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol. 2012; 12: 774–785. doi:
    1. Rovedatti L, Kudo T, Biancheri P, Sarra M, Knowles CH, Rampton DS, et al. Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009; 58: 1629–1636. doi:
    1. Fitzpatrick LR. Inhibition of IL-17 as a pharmacological approach for IBD. Int Rev Immunol. 2013; 32: 544–555. doi:
    1. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, et al. Secukinumab in Crohn's Disease Study Group. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012; 61: 1693–1700. doi:
    1. Keating SM, Heitman JW, Wu S, Deng X, Stacey AR. Magnitude and quality of cytokine and chemokine storm during acute infection distinguish non-progressive and progressive simian immunodeficiency virus infections of nonhuman primates. J Virol. 2016; doi:
    1. Jacobs ES, Keating SM, Abdel-Mohsen M, Gibb SL, Heitman JW, et al. Cytokines elevated in HIV Elite Controllers reduce HIV replication in vitro and modulate HIV restriction factor expression. J Virol. 2017; 28;91(6). pii: e02051-16.
    1. Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who's interfering with whom? Nat Rev Microbiol. 2015; 13(7): 403–413. doi:
    1. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987; 162: 156–159. doi:
    1. Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L Chenchik A. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 1999; 27: 1558–1560.
    1. Petalidis L, Bhattacharyya S, Morris GA, Collins VP, Freeman TC, Lyons PA. Global amplification of mRNA by template-switching PCR: Linearity and application to microarray analysis. Nucleic Acids Res. 2003; 31: e142 doi:
    1. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29: 15–21. doi:
    1. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12: 323 doi:
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15: 550 doi:
    1. Tavares RM, Turer EE, Liu CL, Advincula R, Scapini P, Rhee L, et al. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity. 2010; 33: 181–191. doi:
    1. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3(7):RESEARCH0034.

Source: PubMed

3
Abonnere