African American patients with gout: efficacy and safety of febuxostat vs allopurinol

Alvin F Wells, Patricia A MacDonald, Solomon Chefo, Robert L Jackson, Alvin F Wells, Patricia A MacDonald, Solomon Chefo, Robert L Jackson

Abstract

Background: African Americans are twice as likely as Caucasians to develop gout, but they are less likely to be treated with urate-lowering therapy (ULT). Furthermore, African Americans typically present with more comorbidities associated with gout, such as hypertension, obesity, and renal impairment. We determined the efficacy and safety of ULT with febuxostat or allopurinol in African American subjects with gout and associated comorbidities and in comparison to Caucasian gout subjects.

Methods: This is a secondary analysis of the 6-month Phase 3 CONFIRMS trial. Eligible gouty subjects with baseline serum urate (sUA) ≥ 8.0 mg/dL were randomized 1:1:1 to receive febuxostat 40 mg, febuxostat 80 mg, or allopurinol (300 mg or 200 mg depending on renal function) daily. All subjects received gout flare prophylaxis. Primary efficacy endpoint was the proportion of subjects in each treatment group with sUA < 6.0 mg/dL at the final visit. Additional endpoints included the proportion of subjects with mild or with moderate renal impairment who achieved a target sUA < 6.0 mg/dL at final visit. Adverse events (AEs) were recorded throughout the study.

Results: Of the 2,269 subjects enrolled, 10.0% were African American and 82.1% were Caucasian. African American subjects were mostly male (89.5%), obese (BMI ≥ 30 kg/m2; 67.1%), with mean baseline sUA of 9.8 mg/dL and mean duration of gout of 10.4 years. The proportions of African American subjects with a baseline history of diabetes, renal impairment, or cardiovascular disease were significantly higher compared to Caucasians (p < 0.001). ULT with febuxostat 80 mg was superior to both febuxostat 40 mg (p < 0.001) and allopurinol (p = 0.004). Febuxostat 40 mg was comparable in efficacy to allopurinol. Significantly more African American subjects with mild or moderate renal impairment achieved sUA < 6.0 mg/dL in the febuxostat 80 group than in either the febuxostat 40 mg or allopurinol group (p < 0.05). Efficacy rates in all treatment groups regardless of renal function were comparable between African American and Caucasian subjects, as were AE rates.

Conclusions: In African American subjects with significant comorbidities, febuxostat 80 mg is significantly more efficacious than either febuxostat 40 mg or allopurinol 200/300 mg. Febuxostat was well tolerated in this African American population.Please see related article: http://www.biomedcentral.com/1741-7015/10/15.

Trial registration: ClinicalTrials.gov NCT00430248.

Figures

Figure 1
Figure 1
Flow of African American and Caucasian Subjects Through the CONFIRMS Trial.
Figure 2
Figure 2
Comparative Efficacy of Urate-Lowering Therapy Between African American and Caucasian Subjects Within Treatment Groups: A) All Subjects; B) Subjects With Mild Renal Impairment (eCLcr 60 to < 90 mL/min); and C) Subjects With Moderate Renal Impairment (eCLcr 30 to < 60 mL/min).

References

    1. Arromdee E, Michet CJ, Crowson CS, O'Fallon WM, Gabriel SE. Epidemiology of gout: is the incidence rising? J Rheumatol. 2002;29:2403–2406.
    1. Wallace KL, Riedel AA, Joseph-Ridge N, Wortmann R. Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J Rheumatol. 2004;31:1582–1587.
    1. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58:26–35. doi: 10.1002/art.23176.
    1. United States Census Bureau. Table 3. Annual Estimates of the Resident Population by Sex, Race, and Hispanic Origin for the United States: April 1, 2000 to July 1, 2009 (NC-EST2009-03) 2010. Available at: . Accessed February 14, 2011.
    1. Hochberg MC, Thomas J, Thomas DJ, Mead L, Levine DM, Klag MJ. Racial differences in the incidence of gout. The role of hypertension. Arthritis Rheum. 1995;38:628–632. doi: 10.1002/art.1780380508.
    1. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41:778–799. doi: 10.1002/1529-0131(199805)41:5<778::AID-ART4>;2-V.
    1. Krishnan E, Lienesch D, Kwoh CK. Gout in ambulatory care settings in the United States. J Rheumatol. 2008;35:498–501.
    1. National Center for Health Statistics. Health, United States, 2009: With special feature on medical technology. Hyattsville, MD: Centers for Disease Control. U.S. Department of Health and Human Services; 2010.
    1. Batson B, Belletti D, Wogen J. Effect of African American race on hypertension management: a real-world observational study among 28 US physician practices. Ethn Dis. 2010;20:409–415.
    1. Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med. 2005;143:499–516.
    1. Terkeltaub RA. Clinical practice. Gout. N Engl J Med. 2003;349:1647–1655. doi: 10.1056/NEJMcp030733.
    1. Becker MA, Chohan S. We can make gout management more successful now. Curr Opin Rheumatol. 2008;20:167–172. doi: 10.1097/BOR.0b013e3282f54d03.
    1. Shoji A, Yamanaka H, Kamatani N. A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum. 2004;51:321–325. doi: 10.1002/art.20405.
    1. Becker MA, Schumacher HR, MacDonald PA, Lloyd E, Lademacher C. Clinical efficacy and safety of successful long-term urate lowering with febuxostat or allopurinol in subjects with gout. J Rheumatol. 2009;36:1273–1278. doi: 10.3899/jrheum.080814.
    1. Schumacher HR Jr, Becker MA, Lloyd E, MacDonald PA, Lademacher C. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology (Oxford) 2009;48:188–194.
    1. Bartels EC, Matossian GS. Gout: six-year follow-up on probenecid (benemid) therapy. Arthritis Rheum. 1959;2:193–202. doi: 10.1002/1529-0131(195906)2:3<193::AID-ART1780020302>;2-8.
    1. Sarawate CA, Brewer KK, Yang W, Patel PA, Schumacher HR, Saag KG, Bakst AW. Gout medication treatment patterns and adherence to standards of care from a managed care perspective. Mayo Clin Proc. 2006;81:925–934. doi: 10.4065/81.7.925.
    1. Zhang W, Doherty M, Bardin T, Pascual E, Barskova V, Conaghan P, Gerster J, Jacobs J, Leeb B, Liote F, McCarthy G, Netter P, Nuki G, Perez-Ruiz F, Pignone A, Pimentao J, Punzi L, Roddy E, Uhlig T, Zimmermann-Gorska I. EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT) Ann Rheum Dis. 2006;65:1312–1324. doi: 10.1136/ard.2006.055269.
    1. Dalbeth N, Kumar S, Stamp L, Gow P. Dose adjustment of allopurinol according to creatinine clearance does not provide adequate control of hyperuricemia in patients with gout. J Rheumatol. 2006;33:1646–1650.
    1. Uloric® Full Prescribing Information. Deerfield, IL: Takeda Pharmaceuticals North America, Inc.; 2011.
    1. Becker MA, Schumacher HR Jr, Wortmann RL, MacDonald PA, Eustace D, Palo WA, Streit J, Joseph-Ridge N. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353:2450–2461. doi: 10.1056/NEJMoa050373.
    1. Schumacher HR Jr, Becker MA, Wortmann RL, Macdonald PA, Hunt B, Streit J, Lademacher C, Joseph-Ridge N. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008;59:1540–1548. doi: 10.1002/art.24209.
    1. Becker MA, Schumacher HR, Espinoza LR, Wells AF, Macdonald P, Lloyd E, Lademacher C. The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRMS trial. Arthritis Res Ther. 2010;12:R63. doi: 10.1186/ar2978.
    1. Wallace SL, Robinson H, Masi AT, Decker JL, McCarty DJ, Yu TF. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20:895–900. doi: 10.1002/art.1780200320.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. doi: 10.1159/000180580.
    1. Robert S, Zarowitz BJ, Peterson EL, Dumler F. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med. 1993;21:1487–1495. doi: 10.1097/00003246-199310000-00016.
    1. Belle DJ, Singh H. Genetic factors in drug metabolism. Am Fam Physician. 2008;77:1553–1560.
    1. Cavallari LH, Langaee TY, Momary KM, Shapiro NL, Nutescu EA, Coty WA, Viana MA, Patel SR, Johnson JA. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010;87:459–464. doi: 10.1038/clpt.2009.223.
    1. Villeneuve L, Girard H, Fortier LC, Gagne JF, Guillemette C. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther. 2003;307:117–128. doi: 10.1124/jpet.103.054072.
    1. Kaniwa N, Kurose K, Jinno H, Tanaka-Kagawa T, Saito Y, Saeki M, Sawada J, Tohkin M, Hasegawa R. Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C > T (P229L) found in an African-American. Drug Metab Dispos. 2005;33:458–465.
    1. Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM, Wilkinson GR, Schwarz UI. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol. 2001;60:382–387.
    1. Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–1961. doi: 10.1016/S0140-6736(08)61343-4.
    1. Rule AD, de Andrade M, Matsumoto M, Mosley TH, Kardia S, Turner ST. Association between SLC2A9 transporter gene variants and uric acid phenotypes in African American and white families. Rheumatology (Oxford) 2010.
    1. Charles BA, Shriner D, Doumatey A, Chen G, Zhou J, Huang H, Herbert A, Gerry NP, Christman MF, Adeyemo A, Rotimi CN. A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics. 2011;4:17. doi: 10.1186/1755-8794-4-17.
    1. Krishnan E. Inflammation, oxidative stress and lipids: the risk triad for atherosclerosis in gout. Rheumatology (Oxford) 2010;49:1229–1238. doi: 10.1093/rheumatology/keq037.
    1. Kutzing MK, Firestein BL. Altered uric acid levels and disease states. J Pharmacol Exp Ther. 2008;324:1–7.
    1. Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54:2688–2696. doi: 10.1002/art.22014.
    1. Whelton A. Current and future therapeutic options for the management of gout. Am J Ther. 2010;17:402–417.
    1. Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, Witteman JC. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008;31:361–362.
    1. De Vera MA, Rahman MM, Bhole V, Kopec JA, Choi HK. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis. 2010;69:1162–1164. doi: 10.1136/ard.2009.122770.
    1. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116:894–900. doi: 10.1161/CIRCULATIONAHA.107.703389.
    1. Krishnan E, Svendsen K, Neaton JD, Grandits G, Kuller LH. Long-term cardiovascular mortality among middle-aged men with gout. Arch Intern Med. 2008;168:1104–1110. doi: 10.1001/archinte.168.10.1104.
    1. Mellen PB, Bleyer AJ, Erlinger TP, Evans GW, Nieto FJ, Wagenknecht LE, Wofford MR, Herrington DM. Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension. 2006;48:1037–1042. doi: 10.1161/01.HYP.0000249768.26560.66.
    1. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. Jama. 2000;283:2404–2410. doi: 10.1001/jama.283.18.2404.
    1. Perez-Ruiz F, Atxotegi J, Hernando I, Calabozo M, Nolla JM. Using serum urate levels to determine the period free of gouty symptoms after withdrawal of long-term urate-lowering therapy: a prospective study. Arthritis Rheum. 2006;55:786–790. doi: 10.1002/art.22232.
    1. Perez-Ruiz F, Calabozo M, Pijoan JI, Herrero-Beites AM, Ruibal A. Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum. 2002;47:356–360. doi: 10.1002/art.10511.
    1. Perez-Ruiz F, Liote F. Lowering serum uric acid levels: what is the optimal target for improving clinical outcomes in gout? Arthritis Rheum. 2007;57:1324–1328. doi: 10.1002/art.23007.
    1. Sanchez-Lozada LG, Tapia E, Soto V, Avila-Casado C, Franco M, Wessale JL, Zhao L, Johnson RJ. Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia. Nephron Physiol. 2008;108:p69–78. doi: 10.1159/000127837.
    1. Sanchez-Lozada LG, Tapia E, Soto V, Avila-Casado C, Franco M, Zhao L, Johnson RJ. Treatment with the xanthine oxidase inhibitor febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol Dial Transplant. 2008;23:1179–1185.
    1. Whelton A, Macdonald PA, Zhao L, Hunt B, Gunawardhana L. Renal function in gout: long-term treatment effects of febuxostat. J Clin Rheumatol. 2011;17:7–13.
    1. Gibson T, Rodgers V, Potter C, Simmonds HA. Allopurinol treatment and its effect on renal function in gout: a controlled study. Ann Rheum Dis. 1982;41:59–65. doi: 10.1136/ard.41.1.59.
    1. Kanbay M, Ozkara A, Selcoki Y, Isik B, Turgut F, Bavbek N, Uz E, Akcay A, Yigitoglu R, Covic A. Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearance, and proteinuria in patients with normal renal functions. Int Urol Nephrol. 2007;39:1227–1233. doi: 10.1007/s11255-007-9253-3.
    1. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51–59. doi: 10.1053/j.ajkd.2005.10.006.
    1. Solomon DH, Avorn J, Levin R, Brookhart MA. Uric acid lowering therapy: prescribing patterns in a large cohort of older adults. Ann Rheum Dis. 2008;67:609–613.
    1. Jordan JM, Lawrence R, Kington R, Fraser P, Karlson E, Lorig K, Liang MH. Ethnic health disparities in arthritis and musculoskeletal diseases: report of a scientific conference. Arthritis Rheum. 2002;46:2280–2286. doi: 10.1002/art.10480.
    1. 2010 National Healthcare Disparities Report. Agency for Healthcare Research and Quality. 2011, AHRQ Publication No. 11-0005.
    1. Lee C, Ayers SL, Kronenfeld JJ. The association between perceived provider discrimination, healthcare utilization and health status in racial and ethnic minorities. Ethn Dis. 2009;19:330–337.
    1. Constantinescu F, Goucher S, Weinstein A, Smith W, Fraenkel L. Understanding why rheumatoid arthritis patient treatment preferences differ by race. Arthritis Rheum. 2009;61:413–418. doi: 10.1002/art.24338.
    1. Constantinescu F, Goucher S, Weinstein A, Fraenkel L. Racial disparities in treatment preferences for rheumatoid arthritis. Med Care. 2009;47:350–355. doi: 10.1097/MLR.0b013e31818af829.
    1. Ang DC, Monahan PO, Cronan TA. Understanding ethnic disparities in the use of total joint arthroplasty: application of the health belief model. Arthritis Rheum. 2008;59:102–108. doi: 10.1002/art.23243.
    1. Becker MA, MacDonald PA, Hunt BJ, Lademacher C, Joseph-Ridge N. Determinants of the clinical outcomes of gout during the first year of urate-lowering therapy. Nucleosides Nucleotides Nucleic Acids. 2008;27:585–591. doi: 10.1080/15257770802136032.
    1. Shaya FT, Gbarayor CM, Huiwen Keri Y, Agyeman-Duah M, Saunders E. A perspective on African American participation in clinical trials. Contemp Clin Trials. 2007;28:213–217. doi: 10.1016/j.cct.2006.10.001.

Source: PubMed

3
Abonnere