Collagen-based silver nanoparticles for biological applications: synthesis and characterization

Vinicius S Cardoso, Patrick V Quelemes, Adriany Amorin, Fernando Lucas Primo, Graciely Gomides Gobo, Antonio C Tedesco, Ana C Mafud, Yvonne P Mascarenhas, José Raimundo Corrêa, Selma A S Kuckelhaus, Carla Eiras, José Roberto S A Leite, Durcilene Silva, José Ribeiro dos Santos Júnior, Vinicius S Cardoso, Patrick V Quelemes, Adriany Amorin, Fernando Lucas Primo, Graciely Gomides Gobo, Antonio C Tedesco, Ana C Mafud, Yvonne P Mascarenhas, José Raimundo Corrêa, Selma A S Kuckelhaus, Carla Eiras, José Roberto S A Leite, Durcilene Silva, José Ribeiro dos Santos Júnior

Abstract

Background: Type I collagen is an abundant natural polymer with several applications in medicine as matrix to regenerate tissues. Silver nanoparticles is an important nanotechnology material with many utilities in some areas such as medicine, biology and chemistry. The present study focused on the synthesis of silver nanoparticles (AgNPs) stabilized with type I collagen (AgNPcol) to build a nanomaterial with biological utility. Three formulations of AgNPcol were physicochemical characterized, antibacterial activity in vitro and cell viability assays were analyzed. AgNPcol was characterized by means of the following: ultraviolet-visible spectroscopy, dynamic light scattering analysis, Fourier transform infrared spectroscopy, atomic absorption analysis, transmission electron microscopy and of X-ray diffraction analysis.

Results: All AgNPcol showed spherical and positive zeta potential. The AgNPcol at a molar ratio of 1:6 showed better characteristics, smaller hydrodynamic diameter (64.34 ± 16.05) and polydispersity index (0.40 ± 0.05), and higher absorbance and silver reduction efficiency (0.645 mM), when compared with the particles prepared in other mixing ratios. Furthermore, these particles showed antimicrobial activity against both Staphylococcus aureus and Escherichia coli and no toxicity to the cells at the examined concentrations.

Conclusions: The resulted particles exhibited favorable characteristics, including the spherical shape, diameter between 64.34 nm and 81.76 nm, positive zeta potential, antibacterial activity, and non-toxicity to the tested cells (OSCC).

Figures

Figure 1
Figure 1
AgNPcol characterization. (A) Absorbance spectra of AgNPcols at three different NaBH4 to AgNO3 molar ratios; (B) FTIR spectra of collagen; (C) XDR patterns of AgNPcol (1:6 molar ratio); (D) FTIR spectra of AgNPcol (1:6 molar ratio).
Figure 2
Figure 2
Images of Silver nanoparticle stabilized with collagen. TEM images of AgNPcol at AgNO3/NaBH4 molar ratio of (A) 1:1, (B) 1:6, and (C) 1:15 molar ratio. Histograms showing the particle size distribution of AgNPcol at molar ratio of (D) 1:1 (28.11 ± 10 nm), (E) 1:6 (15.17 ± 2.71 nm), and (F) 1:15 (28.17 ± 9.45 nm) (scale bar = 0.1 μm).
Figure 3
Figure 3
Cell viability. Results of cell viability test of AgNPcol and control solutions (Col and AgNO3). All data were expressed as mean ± SEM values of three independent experiments. A value of *p < 0.05 was considered statistically significance.

References

    1. Dornelles C, Costa S. Estudo comparativo da dissolução de três diferentes marcas de colágeno utilizadas em técnicas cirúrgicas otológicas. Rev Bras Otorrinolaringol. 2003;69:744–751. doi: 10.1590/S0034-72992003000600004.
    1. Tonhi E, Plepis AMG. Obtenção e caracterização de blendas colágeno-quitosana. Qim nova. 2002;25:943–948. doi: 10.1590/S0100-40422002000600011.
    1. Lin YC, Tan FJ, Marra KG, Jan SS, Liu DC. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomater. 2009;5:2591–2600. doi: 10.1016/j.actbio.2009.03.038.
    1. Wang XH, Li DP, Wang WJ, Feng QL, Cui FZ, Xu YX, Song XH, Van der Werf M. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials. 2003;24:3213–3220. doi: 10.1016/S0142-9612(03)00170-4.
    1. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, Sledge CB, Yannas IV, Spector M. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials. 1997;18:769–776. doi: 10.1016/S0142-9612(97)00001-X.
    1. Nishikawa AK, Taira T, Yoshizato K. In vitro maturation of collagen fibrils modulates spreading, DNA synthesis, and collagenolysis of epidermal cells and fibroblasts. Exp Cell Res. 1987;171:164–177. doi: 10.1016/0014-4827(87)90259-X.
    1. Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, Warden G, Zawacki B. Artificial dermis for major burns. Ann Surg. 1988;208:313–320. doi: 10.1097/00000658-198809000-00008.
    1. De Vries HJC, Middelkoop E, Mekkes JR, Dutrieux RP, Wildevuur CHR, Westerhof W. Dermal regeneration in native noncross-linked collagen sponges with diferent extracellular matrix molecules. Wound Repair Regen. 1994;2:37–47. doi: 10.1046/j.1524-475X.1994.20107.x.
    1. Nevins M, Kirkerhead C, Nevins M, Wozney JA, Palmer R. Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenetic protein-2. Int J Periodont Restorative Dent. 1996;16:9–19.
    1. Stone KR, Steadman JR, Rodkey WG, Li ST. Regeneration of a meniscal cartilage with use of a collagen scaffold: analysis of preliminary data. J Bone Jt Surg. 1997;79A:1770–1777.
    1. Speer DP, Chvapil M, Volz RG, Holmes MD. Enhancement of healing in osteochondral defects by collagen sponge implants. Clin Orthop Relat Res. 1979;144:326–335.
    1. Natsume T, Ike O, Okada T, Takimoto N, Shimizu Y, Ikada Y. Porous collagen sponge for esophageal replacement. J Biomed Mater Res. 1993;27:867–875. doi: 10.1002/jbm.820270705.
    1. Narotam PK, Van Dellen JR, Bhoola KD. A clinicopathological study of collagen sponge as a dural graft in neurosurgery. J Neurosurg. 1995;82:406–412. doi: 10.3171/jns.1995.82.3.0406.
    1. Van-Wachem PB, Van-Luyn MJA, Costa MLP. Myoblast seeding in a collagen matrix evaluated in vitro. J Biomed Mater Res. 1996;30:353–360. doi: 10.1002/(SICI)1097-4636(199603)30:3<353::AID-JBM9>;2-P.
    1. Ding T, Lu WW, Zheng Y, Li ZY, Pan HB, Luo Z. Rapid repair of rat sciatic nerve injury using a nanosilver-embedded collagen scaffold coated with laminin and fibronectin. Regen Med. 2011;6:437–447. doi: 10.2217/rme.11.39.
    1. Matsuda K, Suzuki S, Isshiki N, Yoshioka K, Okada T, Ikada Y. Influence of glycosaminoglycans on the collagen sponge component of a bilayer artificial skin. Biomaterials. 1990;11:351–355. doi: 10.1016/0142-9612(90)90113-5.
    1. Srivastava S, Gorham SD, French DA, Shivas AA, Courtney JM. In vivo evaluation and comparison of collagen, acetylated collagen and collagen/glycosaminoglycan composite films and sponges as candidate biomaterials. Biomaterials. 1990;11:155–161. doi: 10.1016/0142-9612(90)90148-J.
    1. Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F, Griffith M. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials. 2009;30:1551–1559. doi: 10.1016/j.biomaterials.2008.11.022.
    1. Fagerholm P, Lagali NS, Merrett K, Jackson WB, Munger R, Liu Y, Polarek JW, Söderqvist M, Griffith M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2:46ra61. doi: 10.1126/scitranslmed.3001022.
    1. Perng CK, Wang YJ, Tsi CH, Ma H. In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. J Surg Res. 2011;168:9–15. doi: 10.1016/j.jss.2009.09.052.
    1. Bakare RA, Bhan C, Raghavan D. Synthesis and characterization of collagen grafted Poly(hydroxybutyrate-valerate) (PHBV) scaffold for loading of bovine serum albumin capped silver (Ag/BSA) nanoparticles in the potential use of tissue engineering application. Biomacromolecules. 2014;15:423–435. doi: 10.1021/bm401686v.
    1. Jithendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces. 2013;5:7291–7298. doi: 10.1021/am401637c.
    1. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett. 2011;201:27–33. doi: 10.1016/j.toxlet.2010.12.001.
    1. Shang L, Wang Y, Huang L, Dong S. Preparation of DNA-silver nanohybrids in multilayer nanoreactors by in situ electrochemical reduction, characterization, and application. Langmuir. 2007;23:7738–7744. doi: 10.1021/la700700e.
    1. Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B. 2012;98:112–119. doi: 10.1016/j.colsurfb.2012.04.006.
    1. Neto EAB, Ribeiro C, Zucolotto V. Embrapa. 2008. Síntese de nanopartículas de prata para aplicação na sanitização de embalagens.
    1. Wong KKY, Liu X. Silver nanoparticles-the real “silver bullet” in clinical medicine? Med Chem Commun. 2010;1:125–131. doi: 10.1039/c0md00069h.
    1. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006.
    1. Ahamed M, Alsalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411:1841–1848. doi: 10.1016/j.cca.2010.08.016.
    1. Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam PK, Chiu J, Che C. Proteomic analysis of the mode of antibacterial action of silver research articles. J Proteome Res. 2006;5:916–924. doi: 10.1021/pr0504079.
    1. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3:168–171. doi: 10.1016/j.nano.2007.02.001.
    1. Panácek A, Kvítek L, Prucek R, Kolář M, Veceřová R, Pizúrová N, Sharma VK, Nevěcná TJ, Zbořil R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–16253. doi: 10.1021/jp063826h.
    1. Gnanadhas DP, Ben Thomas M, Thomas R, Raichur AM, Chakravortty D. Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother. 2013;57:4945–4955. doi: 10.1128/AAC.00152-13.
    1. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06.
    1. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353. doi: 10.1088/0957-4484/16/10/059.
    1. Kwan KHL, Liu X, To MKT, Yeung KWK, Ho C, Wong KKY. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomedicine. 2011;7:497–504. doi: 10.1016/j.nano.2011.01.003.
    1. Alarcon EI, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KG, González-Béjar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M, Scaiano JC. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials. 2012;33:4947–4956. doi: 10.1016/j.biomaterials.2012.03.033.
    1. Sun Y, Wang L, Sun L, Guo C, Yang T, Liu Z, Xu F, Li Z. Fabrication, characterization, and application in surface-enhanced Raman spectrum of assembled type-I collagen-silver nanoparticle multilayered films. J Chem Phys. 2008;128:074704. doi: 10.1063/1.2832322.
    1. Zhang Z, Wu Y. Investigation of the NaBH4-induced aggregation of Au nanoparticles. Langmuir. 2010;26:9214–9223. doi: 10.1021/la904410f.
    1. Li Y, Douglas EP. Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils. Colloids Surf B. 2013;112:42–50. doi: 10.1016/j.colsurfb.2013.07.037.
    1. Sano S, Kato K, Ikada Y. Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials. 1993;14:817–822. doi: 10.1016/0142-9612(93)90003-K.
    1. Desai V, Kowshik M. Synthesis and characterization of fumaric acid functionalized AgCl/titania nanocomposite with enhanced antibacterial activity. J Nanosci Nanotechnol. 2013;13:2826–2834. doi: 10.1166/jnn.2013.7370.
    1. Prasad RY, McGee JK, Killius MG, Suarez DA, Blackman CF, DeMarini DM, Simmons SO. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol In Vitro. 2013;27:2013–2021. doi: 10.1016/j.tiv.2013.07.005.
    1. Stevanović M, Bračko I, Milenković M, Filipović N, Nunić J, Filipič M, Uskoković DP. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomater. 2014;10:151–162. doi: 10.1016/j.actbio.2013.08.030.
    1. Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–515. doi: 10.1016/j.ijbiomac.2014.01.071.
    1. Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ. 2014;468–469:968–976. doi: 10.1016/j.scitotenv.2013.09.006.
    1. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001.
    1. Hamouda T, Baker JR. Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol. 2000;89:397–403. doi: 10.1046/j.1365-2672.2000.01127.x.
    1. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:5. doi: 10.1186/1477-3155-12-5.
    1. Baker C, Pradhan A, Parkstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol. 2005;5(2):244–249. doi: 10.1166/jnn.2005.034.
    1. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11:26. doi: 10.1186/1477-3155-11-26.
    1. Gao X, Gu G, Hu Z, Guo Y, Fu X, Song J. A simple method for preparation of silver dendrites. Colloids Surfaces A Physicochem Eng Asp. 2005;254:57–61. doi: 10.1016/j.colsurfa.2004.11.009.
    1. Sileikaitċ A, Prosyčevas I, Puišo J, Juraitis A, Guobienċ A. Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci (Medziagotyra) 2006;12(4):287–291.
    1. Yamamoto SY, Ujiwara KF, Atarai HW. Surface-enhanced Raman scattering from oleate-stabilized silver colloids at a liquid/liquid interface. Anal Sci. 2004;20(September):1347–1352. doi: 10.2116/analsci.20.1347.
    1. Zaheer K, Shaeel AA, Abdullah YO, Ziya AK, Abdulrahman AOA. Shape-directing role of cetyltrimethylammonium bromide in the preparation of silver nanoparticles. J Colloid Interface Sci. 2012;367:101–108. doi: 10.1016/j.jcis.2011.10.014.
    1. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol. 2011;9:30. doi: 10.1186/1477-3155-9-30.
    1. Kato H, Nakamura A, Takahashi K, Kinugasa S. Accurate size and size-distribution determination of polystyrene latex nanoparticles in aqueous medium using dynamic light scattering and asymmetrical flow field flow fractionation with multi-angle light scattering. Nanomaterials. 2012;2:15–30. doi: 10.3390/nano2010015.
    1. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796. doi: 10.1155/2013/535796.
    1. Prokopovich P, Leech R, Carmalt CJ, Parkin IP, Perni S. A novel bone cement impregnated with silver – tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int J Nanomed. 2013;8:2227–2237. doi: 10.2147/IJN.S42822.
    1. PEAK Fitting Module. Northampton: OriginLab Corporation, One Roundhouse Plaza; 2002.
    1. CLSI-Clinical Laboratory Standards Institute: Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically. Available online: (accessed on 18 September 2013).
    1. Quelemes PV, Araruna FB, de Faria BEF, Kuckelhaus SAS, da Silva DA, Mendonça RZ, Eiras C, Soares MJS, Leite JRSA. Development and antibacterial activity of cashew gum-based silver nanoparticles. Int J Mol Sci. 2013;14:4969–4981. doi: 10.3390/ijms14034969.
    1. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012;8:37–45. doi: 10.1016/j.nano.2011.05.007.
    1. Falqueiro AM, Siqueira-Moura MP, Jardim DR, Primo FL, Morais PC, Mosiniewicz-Szablewska E, Suchocki P, Tedesco AC. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation. J Appl Phys. 2012;111:07B335. doi: 10.1063/1.3680541.

Source: PubMed

3
Abonnere