Potassium responses to sodium zirconium cyclosilicate in hyperkalemic hemodialysis patients: post-hoc analysis of DIALIZE

Steven Fishbane, Martin Ford, Masafumi Fukagawa, Kieran McCafferty, Anjay Rastogi, Bruce Spinowitz, Konstantin Staroselskiy, Konstantin Vishnevskiy, Vera Lisovskaja, Ayman Al-Shurbaji, Nicolas Guzman, Sunil Bhandari, Steven Fishbane, Martin Ford, Masafumi Fukagawa, Kieran McCafferty, Anjay Rastogi, Bruce Spinowitz, Konstantin Staroselskiy, Konstantin Vishnevskiy, Vera Lisovskaja, Ayman Al-Shurbaji, Nicolas Guzman, Sunil Bhandari

Abstract

Background: Sodium zirconium cyclosilicate (SZC) is an effective and well-tolerated treatment for hyperkalemia in maintenance hemodialysis patients. In post-hoc analyses of the phase 3b DIALIZE study, we examined the spectrum of potassium responses to SZC.

Methods: Post-hoc analyses with SZC and placebo included: the number of long interdialytic interval (LIDI) visits during the 4-week evaluation period where patients attained pre-dialysis serum potassium (sK+) concentrations of 4.0-5.0 and 4.0-5.5 mmol/L; potassium gradient (the difference between pre-dialysis sK+ and dialysate potassium) at days 36, 43, 50, and 57, and change from baseline to the end of treatment (EOT) using categories of potassium gradient (1 to < 2, 2 to < 3, 3 to < 4, and ≥ 4 mmol/L).

Results: A greater proportion of patients achieved the ranges of pre-dialysis sK+ concentration with SZC versus placebo for ≥1, ≥ 2, ≥ 3, and 4 LIDI visits over 4 weeks; 23.7 and 48.5% of patients in the SZC group achieved pre-dialysis sK+ concentrations of 4.0-5.0 and 4.0-5.5 mmol/L, respectively, at all 4 LIDI visits. Baseline mean potassium gradient was similar with SZC and placebo. At day 57, mean (standard deviation) potassium gradient was 2.78 (0.08) mmol/L with SZC and 3.52 (0.08) mmol/L with placebo; mean difference (95% confidence interval) was - 0.74 mmol/L (- 0.97 to - 0.52). A greater reduction in potassium gradient category from baseline towards lower-risk categories at EOT was observed with SZC versus placebo.

Conclusions: These analyses expand our knowledge of the spectrum of potassium responses with SZC in hyperkalemic hemodialysis patients.

Trial registration: NCT03303521 .

Keywords: Chronic kidney disease; Hemodialysis; Hyperkalemia; Potassium; Sodium zirconium cyclosilicate.

Conflict of interest statement

SF received research support and consulting fees from AstraZeneca. MFord received travel support from Amgen and AstraZeneca, and is an advisory board member for AstraZeneca. MFukagawa received consulting fees and lectures fees from AstraZeneca Japan. KM is an academic grant holder and advisory board member for AstraZeneca. AR received research or travel support from and/or is a speaker, consultant, or advisory board member for AstraZeneca, Relypsa, Fresenius Medical Care, Sanofi, Kadmon, AMAG, Otsuka, Genzyme, GSK, Omerus, Janssen, Reata Pharmaceuticals, Ironwood, and Amgen. BS received research grants, lecture fees and/or consulting fees from AstraZeneca, Akebia, Reata Pharmaceuticals, and Fresenius Medical Care. KS received research support from AstraZeneca. KV received research support from AstraZeneca. VL, AAS, and NG are employees of AstraZeneca. SB has given lectures and participated in an advisory board for AstraZeneca, has given lectures sponsored by Vifor Pharma, and has received travel support from AstraZeneca and Vifor Pharma.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Proportion of patients achieving pre-dialysis serum potassium ranges of a 4.0–5.0 mmol/L and b 4.0–5.5 mmol/L for ≥1, ≥ 2, ≥ 3, and 4 LIDI visits during the 4-week evaluation period. Includes pre-dialysis serum potassium values obtained at the LIDI visits in the evaluation period (days 36, 43, 50, and 57). No imputation of missing data was conducted. Patients receiving rescue therapy were included in the analysis. LIDI, long interdialytic interval; SZC, sodium zirconium cyclosilicate
Fig. 2
Fig. 2
Mean serum potassium to dialysate potassium gradient (mmol/L) during the 4-week evaluation period. Baseline (visit 1, day −7) mean (SD) potassium gradient was comparable between the treatment arms: SZC 3.78 (0.59) mmol/L versus placebo 3.73 (0.64) mmol/L. Error bars represent 95% CIs. All estimates and 95% CIs in the 4-week evaluation period are obtained from a linear model with gradient as response and treatment as the single covariate. The mean for each treatment group is the least-squares mean from this model. The model was fitted for each visit separately. CI, confidence interval; SD, standard deviation; SZC, sodium zirconium cyclosilicate
Fig. 3
Fig. 3
Change in serum potassium to dialysate potassium gradient categories from baseline to EOT with SZC and placebo. Missing data are not shown. Dialysate potassium gradient data at EOT are missing for the following baseline categories: baseline gradient 2–n = 2 (16.7%), placebo n = 2 (12.5%); baseline gradient 3–< 4 mmol/L: SZC n = 7 (15.6%), placebo n = 3 (6.0%); baseline gradient ≥4 mmol/L: SZC n = 5 (13.2%), placebo n = 5 (15.6%). EOT, end of treatment; SZC, sodium zirconium cyclosilicate

References

    1. Kovesdy CP, Regidor DL, Mehrotra R, Jing J, McAllister CJ, Greenland S, et al. Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin J Am Soc Nephrol. 2007;2(5):999–1007. doi: 10.2215/CJN.04451206.
    1. Brunelli SM, Du Mond C, Oestreicher N, Rakov V, Spiegel DM. Serum potassium and short-term clinical outcomes among hemodialysis patients: impact of the long interdialytic interval. Am J Kidney Dis. 2017;70(1):21–29. doi: 10.1053/j.ajkd.2016.10.024.
    1. Genovesi S, Valsecchi MG, Rossi E, Pogliani D, Acquistapace I, De Cristofaro V, et al. Sudden death and associated factors in a historical cohort of chronic haemodialysis patients. Nephrol Dial Transplant. 2009;24(8):2529–2536. doi: 10.1093/ndt/gfp104.
    1. Karaboyas A, Zee J, Brunelli SM, Usvyat LA, Weiner DE, Maddux FW, et al. Dialysate potassium, serum potassium, mortality, and arrhythmia events in hemodialysis: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2017;69(2):266–77.
    1. Foley RN, Gilbertson DT, Murray T, Collins AJ. Long interdialytic interval and mortality among patients receiving hemodialysis. N Engl J Med. 2011;365(12):1099–1107. doi: 10.1056/NEJMoa1103313.
    1. Agar BU, Culleton BF, Fluck R, Leypoldt JK. Potassium kinetics during hemodialysis. Hemodial Int. 2015;19(1):23–32. doi: 10.1111/hdi.12195.
    1. Hou S, McElroy PA, Nootens J, Beach M. Safety and efficacy of low-potassium dialysate. Am J Kidney Dis. 1989;13(2):137–143. doi: 10.1016/S0272-6386(89)80132-5.
    1. Zehnder C, Gutzwiller JP, Huber A, Schindler C, Schneditz D. Low-potassium and glucose-free dialysis maintains urea but enhances potassium removal. Nephrol Dial Transplant. 2001;16(1):78–84. doi: 10.1093/ndt/16.1.78.
    1. Al-Ghamdi G, Hemmelgarn B, Klarenbach S, Manns B, Wiebe N, Tonelli M, et al. Dialysate potassium and risk of death in chronic hemodialysis patients. J Nephrol. 2010;23(1):33–40.
    1. Jadoul M, Thumma J, Fuller DS, Tentori F, Li Y, Morgenstern H, et al. Modifiable practices associated with sudden death among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Clin J Am Soc Nephrol. 2012;7(5):765–74.
    1. Karnik JA, Young BS, Lew NL, Herget M, Dubinsky C, Lazarus JM, et al. Cardiac arrest and sudden death in dialysis units. Kidney Int. 2001;60(1):350–357. doi: 10.1046/j.1523-1755.2001.00806.x.
    1. Pun PH, Lehrich RW, Honeycutt EF, Herzog CA, Middleton JP. Modifiable risk factors associated with sudden cardiac arrest within hemodialysis clinics. Kidney Int. 2011;79(2):218–227. doi: 10.1038/ki.2010.315.
    1. Ferrey A, You AS, Kovesdy CP, Nakata T, Veliz M, Nguyen DV, et al. Dialysate potassium and mortality in a prospective hemodialysis cohort. Am J Nephrol. 2018;47(6):415–423. doi: 10.1159/000489961.
    1. Redaelli B, Locatelli F, Limido D, Andrulli S, Signorini MG, Sforzini S, et al. Effect of a new model of hemodialysis potassium removal on the control of ventricular arrhythmias. Kidney Int. 1996;50(2):609–617. doi: 10.1038/ki.1996.356.
    1. Santoro A, Mancini E, London G, Mercadal L, Fessy H, Perrone B, et al. Patients with complex arrhythmias during and after haemodialysis suffer from different regimens of potassium removal. Nephrol Dial Transplant. 2008;23(4):1415–1421. doi: 10.1093/ndt/gfm730.
    1. Brunelli SM, Spiegel DM, Du Mond C, Oestreicher N, Winkelmayer WC, Kovesdy CP. Serum-to-dialysate potassium gradient and its association with short-term outcomes in hemodialysis patients. Nephrol Dial Transplant. 2018;33(7):1207–1214. doi: 10.1093/ndt/gfx241.
    1. Stavros F, Yang A, Leon A, Nuttall M, Rasmussen HS. Characterization of structure and function of ZS-9, a K+ selective ion trap. PLoS One. 2014;9(12):e114686–e.
    1. Kosiborod M, Rasmussen HS, Lavin P, Qunibi WY, Spinowitz B, Packham D, et al. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial. JAMA. 2014;312(21):2223–2233. doi: 10.1001/jama.2014.15688.
    1. Ash SR, Singh B, Lavin PT, Stavros F, Rasmussen HS. A phase 2 study on the treatment of hyperkalemia in patients with chronic kidney disease suggests that the selective potassium trap, ZS-9, is safe and efficient. Kidney Int. 2015;88(2):404–411. doi: 10.1038/ki.2014.382.
    1. Anker SD, Kosiborod M, Zannad F, Piña IL, McCullough PA, Filippatos G, et al. Maintenance of serum potassium with sodium zirconium cyclosilicate (ZS-9) in heart failure patients: results from a phase 3 randomized, double-blind, placebo-controlled trial. Eur J Heart Fail. 2015;17(10):1050–1056. doi: 10.1002/ejhf.300.
    1. Packham DK, Rasmussen HS, Lavin PT, El-Shahawy MA, Roger SD, Block G, et al. Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med. 2015;372(3):222–231. doi: 10.1056/NEJMoa1411487.
    1. Spinowitz BS, Fishbane S, Pergola PE, Roger SD, Lerma EV, Butler J, et al. Sodium zirconium cyclosilicate among individuals with hyperkalemia: a 12-month phase 3 study. Clin J Am Soc Nephrol. 2019;14(6):798–809. doi: 10.2215/CJN.12651018.
    1. Roger SD, Spinowitz BS, Lerma EV, Singh B, Packham DK, Al-Shurbaji A, et al. Efficacy and safety of sodium zirconium cyclosilicate for treatment of hyperkalemia: an 11-month open-label extension of HARMONIZE. Am J Nephrol. 2019;50(6):473–480. doi: 10.1159/000504078.
    1. Fishbane S, Ford M, Fukagawa M, McCafferty K, Rastogi A, Spinowitz B, et al. A phase 3b, randomized, double-blind, placebo-controlled study of sodium zirconium cyclosilicate for reducing the incidence of predialysis hyperkalemia. J Am Soc Nephrol. 2019;30(9):1723–1733. doi: 10.1681/ASN.2019050450.
    1. Clase CM, Carrero J-J, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 2020;97(1):42–61.
    1. Ashby D, Borman N, Burton J, Corbett R, Davenport A, Farrington K, et al. Renal association clinical practice guideline on haemodialysis. BMC Nephrol. 2019;20(1):379. doi: 10.1186/s12882-019-1527-3.
    1. Yusuf AA, Hu Y, Singh B, Menoyo JA, Wetmore JB. Serum potassium levels and mortality in hemodialysis patients: a retrospective cohort study. Am J Nephrol. 2016;44(3):179–186. doi: 10.1159/000448341.
    1. Thornley-Brown D, Saha M. Dialysate content and risk of sudden cardiac death. Curr Opin Nephrol Hypertens. 2015;24(6):557–562. doi: 10.1097/MNH.0000000000000177.
    1. Locatelli F, La Milia V, Violo L, Del Vecchio L, Di Filippo S. Optimizing haemodialysate composition. Clin Kidney J. 2015;8(5):580–589. doi: 10.1093/ckj/sfv057.
    1. Hung AM, Hakim RM. Dialysate and serum potassium in hemodialysis. Am J Kidney Dis. 2015;66(1):125–132. doi: 10.1053/j.ajkd.2015.02.322.
    1. Pun PH, Middleton JP. Dialysate potassium, dialysate magnesium, and hemodialysis risk. J Am Soc Nephrol. 2017;28(12):3441–3451. doi: 10.1681/ASN.2017060640.

Source: PubMed

3
Abonnere