DTIPrep: quality control of diffusion-weighted images

Ipek Oguz, Mahshid Farzinfar, Joy Matsui, Francois Budin, Zhexing Liu, Guido Gerig, Hans J Johnson, Martin Styner, Ipek Oguz, Mahshid Farzinfar, Joy Matsui, Francois Budin, Zhexing Liu, Guido Gerig, Hans J Johnson, Martin Styner

Abstract

In the last decade, diffusion MRI (dMRI) studies of the human and animal brain have been used to investigate a multitude of pathologies and drug-related effects in neuroscience research. Study after study identifies white matter (WM) degeneration as a crucial biomarker for all these diseases. The tool of choice for studying WM is dMRI. However, dMRI has inherently low signal-to-noise ratio and its acquisition requires a relatively long scan time; in fact, the high loads required occasionally stress scanner hardware past the point of physical failure. As a result, many types of artifacts implicate the quality of diffusion imagery. Using these complex scans containing artifacts without quality control (QC) can result in considerable error and bias in the subsequent analysis, negatively affecting the results of research studies using them. However, dMRI QC remains an under-recognized issue in the dMRI community as there are no user-friendly tools commonly available to comprehensively address the issue of dMRI QC. As a result, current dMRI studies often perform a poor job at dMRI QC. Thorough QC of dMRI will reduce measurement noise and improve reproducibility, and sensitivity in neuroimaging studies; this will allow researchers to more fully exploit the power of the dMRI technique and will ultimately advance neuroscience. Therefore, in this manuscript, we present our open-source software, DTIPrep, as a unified, user friendly platform for thorough QC of dMRI data. These include artifacts caused by eddy-currents, head motion, bed vibration and pulsation, venetian blind artifacts, as well as slice-wise and gradient-wise intensity inconsistencies. This paper summarizes a basic set of features of DTIPrep described earlier and focuses on newly added capabilities related to directional artifacts and bias analysis.

Keywords: diffusion MRI; diffusion tensor imaging; open-source; preprocessing; quality control; software.

Figures

Figure 1
Figure 1
Examples of intensity artifacts detected with DTIPrep. (A) An electromagnetic interference-like artifact, (B) severe signal loss in the anterior and middle regions, (C) venetian blind artifact, (D) inter-slice and intra-slice intensity artifact, and (E) checkerboard artifact.
Figure 2
Figure 2
Head-motion artifacts. Rigid registration parameters between each gradient and baseline image of the original DWIs (A) and corrected DWIs (B). (C) Overlay comparison between original DWI #2 before (red) and after (green) correction.
Figure 3
Figure 3
QC reduces measurement noise in DTI. Standard deviation of FA in five healthy subjects in six regions are shown. QC reduces FA standard deviation considerably even for a single scan; the improvement is dramatic when the number of included repeat scans (horizontal axis) is increased. Percentage figures indicate number of gradient directions excluded by DTIPrep. Courtesy of V. Magnotta (University of Iowa).
Figure 4
Figure 4
DWI-based QC results using DTIPrep through three steps. (1) converting the DWI image from DICOM to NRRD format, (2) loading the protocol and running the software, and (3) if necessary, visual checking and saving the final DWI dataset. In this example, gradient #11 suffers from intensity artifact and is excluded. The sphere shows a 3D view of the gradient distribution before (blue dots) and after running DTIPrep (green dots, visualized on top of the blue dots), respectively. In this particular example, a large number of DWI's were excluded (missing green dots on the 3D sphere). The 3D sphere also reveals a highly non-uniform distribution of the input diffusion gradient, indicating a non-optimal acquisition protocol.
Figure 5
Figure 5
DTIPrep workflow.
Figure 6
Figure 6
Vibration artifacts. (A) Artifact free scan. Top-left, a representative axial slice of the color-FA map. Top-right, spherical histogram of the PD distribution within the entire brain. Bottom-right, tractography of genu and splenium of the corpus callosum. Bottom-left, genu tract in more detail. (B) Vibration artifacts may manifest as localized (prefrontal region for this example) signal-loss in the DWI image or as dominant L-R (red) direction. (C) Vibration artifact in the absence of localize DWI signal loss. Spherical viewpoints chosen to show locations of highest histogram frequency.
Figure 7
Figure 7
Bias analysis of different DWI schemes via MC simulation. (A–C) Gradient direction distribution for three common DWI acquisition schemes: 42-direction quasi-uniform, Phillips 32-direction non-uniform, and 6-direction uniform. (D–F) Estimated error distribution in PD computation. (G–I) Estimated error distribution in FA computation as a percentage of true FA. 200,000 MC simulation were performed for this experiment, with a true FA value of 0.4 and SNR = 10.

References

    1. Barkovich A. J. (2000). Concepts of myelin and myelination in neuroradiology. AJNR Am. J. Neuroradiol. 21, 1099–1109
    1. Basser P., Pierpaoli C. (1995). Elucidating tissue structure by diffusion tensor MRI, in SMR/ESMRMB (Nice, France: ), 900
    1. Basser P. J., Pierpaoli C. (1998). A simplified method to measure the diffusion tensor from seven MR images. Magn. Reson. Med. 39, 928–934 10.1002/mrm.1910390610
    1. Behrens T. E. J., Berg H. J., Jbabdi S., Rushworth M. F. S., Woolrich M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 10.1016/j.neuroimage.2006.09.018
    1. Boucharin A., Oguz I., Vachet C., Shi Y., Sanchez M., Styner M. (2011). Efficient, graph-based white matter connectivity from orientation distribution functions via multi-directional graph propagation. Proc. SPIE 7962, 79620S 10.1117/12.878291
    1. Chang L.-C., Jones D. K., Pierpaoli C. (2005). Restore: robust estimation of tensors by outlier rejection. Magn. Reson. Med. 53, 1088–1095 10.1002/mrm.20426
    1. Ciccarelli O., Werring D. J., Wheeler-Kingshott C. A., Barker G. J., Parker G. J., Thompson A. J., et al. (2001). Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56, 926–933 10.1212/WNL.56.7.926
    1. Coleman L. G., Oguz I., Lee J., Styner M., Crews F. (2012). Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis. Alcohol 46, 603–612 10.1016/j.alcohol.2012.01.003
    1. Cox R. W., Hyde J. S. (1997). Software tools for analysis and visualization of fmri data. NMR Biomed. 10, 171–178 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>;2-L
    1. Dumas E. M., van den Bogaard S. J. A., Ruber M. E., Reilman R. R., Stout J. C., Craufurd D., et al. (2012). Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington's disease. Hum. Brain Mapp. 33, 203–212 10.1002/hbm.21205
    1. Escolar M. L., Poe M. D., Smith J. K., Gilmore J. H., Kurtzberg J., Lin W., et al. (2009). Diffusion tensor imaging detects abnormalities in the corticospinal tracts of neonates with infantile Krabbe disease. AJNR Am. J. Neuroradiol. 30, 1017–1021 10.3174/ajnr.A1476
    1. Farzinfar M., Dietrich C., Smith R., Li Y., Gupta A., Liu Z., et al. (2012). Entropy based DTI quality control via regional orientation distribution. Proc. IEEE Int. Symp. Biomed. Imaging 2012, 22–26 10.1109/ISBI.2012.6235474
    1. Farzinfar M., Li Y., Verde A. R., Oguz I., Gerig G., Styner M. A. (2013a). DTI quality control assessment via error estimation from monte carlo simulations. Proc. Soc. Photo Opt. Instrum. Eng. 8669, 1667549 10.1117/12.2006925
    1. Farzinfar M., Oguz I., Smith R. G., Verde A. R., Dietrich C., Gupta A., et al. (2013b). Diffusion imaging quality control via entropy of principal direction distribution. Neuroimage 82C, 1–12 10.1016/j.neuroimage.2013.05.022
    1. Friston K., Ashburner J., Kiebel S., Nichols T., Penny W. editors (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images. London: Academic Press
    1. Gallichan D., Scholz J., Bartsch A., Behrens T. E., Robson M. D., Miller K. L. (2010). Addressing a systematic vibration artifact in diffusion-weighted MRI. Hum. Brain Mapp. 31, 193–202 10.1002/hbm.20856
    1. Geng X., Gouttard S., Sharma A., Gu H., Styner M., Lin W., et al. (2012). Quantitative tract-based white matter development from birth to age 2 years. Neuroimage 61, 542–557 10.1016/j.neuroimage.2012.03.057
    1. Gerig G., Oguz I., Gouttard S., Lee J., An H., Lin W., et al. (2011). Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse. Front Psychiatry 2:53 10.3389/fpsyt.2011.00053
    1. Gilmore J. H., Kang C., Evans D. D., Wolfe H. M., Smith J. K., Lieberman J. A., et al. (2010). Prenatal and neonatal brain structure and white matter maturation in children at high risk for schizophrenia. Am. J. Psychiatry 167, 1083–1091 10.1176/appi.ajp.2010.09101492
    1. Goodlett C., Fletcher P., Lin W., Gerig G. (2007). Quantification of measurement error in dti: theoretical predictions and validation. Med. Image Comput. Comput. Assist. Interv. 10, 10–17
    1. Hagmann P., Cammoun L., Gigandet X., Meuli R., Honey C. J., Wedeen V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol. 6:e159 10.1371/journal.pbio.0060159
    1. Hazlett H. C., Gu H., McKinstry R. C., Shaw D. W. W., Botteron K. N., Dager S. R., et al. (2012). Brain Volume findings in 6-month-old infants at high familial risk for autism. Am. J. Psychiatry 169, 601–608 10.1176/appi.ajp.2012.11091425
    1. Hess C. P., Mukherjee P., Han E. T., Xu D., Vigneron D. B. (2006). Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–17 10.1002/mrm.20931
    1. Hiltunen J., Hari R., Jousmäki V., Müller K., Sepponen R., Joensuu R. (2006). Quantification of mechanical vibration during diffusion tensor imaging at 3T. Neuroimage 32, 93–103 10.1016/j.neuroimage.2006.03.004
    1. Jones D. K. (2004). The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a monte carlo study. Magn. Reson. Med. 51, 807–815 10.1002/mrm.20033
    1. Jones D. K., Horsfield M. A., Simmons A. (1999). Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42, 515–525 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>;2-H
    1. Lauzon C. B., Caffo B. C., Landman B. A. (2012). Towards automatic quantitative quality control for MRI. Proc. Soc. Photo Opt. Instrum. Eng. 8314, pii: 910819. 10.1117/12.910819
    1. Li Q., Cheung C., Wei R., Cheung V., Hui E. S., You Y., et al. (2010). Voxel-based analysis of postnatal white matter microstructure in mice exposed to immune challenge in early or late pregnancy. Neuroimage 52, 1–8 10.1016/j.neuroimage.2010.04.015
    1. Liu K., Hangzhou Z., Liu X. (2011). Vibrationally Decoupled Patient Table for Use in Magnetic Resonance System. US Patent 7,924,008 B2.
    1. Liu Z., Wang Y., Gerig G., Gouttard S., Tao R., Fletcher T., et al. (2010). Quality control of diffusion weighted images. Proc. SPIE 7628, 9 10.1117/12.844748
    1. Lucas B. C., Bogovic J. A., Carass A., Bazin P.-L., Prince J. L., Pham D. L., et al. (2010). The java image science toolkit (jist) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics 8, 5–17 10.1007/s12021-010-9065-y
    1. McKinstry R. C., Miller J. H., Snyder A. Z., Mathur A., Schefft G. L., Almli C. R., et al. (2002). A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 59, 824–833 10.1212/WNL.59.6.824
    1. Mori S., Zijl P. V. (2002). Fiber tracking: principles and strategies-a technical review. NMR Biomed. 15, 468–480 10.1002/nbm.781
    1. Oguz I., Boucharin A., Lu W., Vachet C., Budin F., Shi Y., et al. (2012a). A minimum cost approach to connectivity from orientation distribution functions via efficient multi-directional graph propagation, in Proceedings of CDMRI Workshop, MICCAI 2012, 210–221
    1. Oguz I., McMurray M. S., Styner M., Johns J. M. (2012b). The translational role of diffusion tensor image analysis in animal models of developmental pathologies. Dev. Neurosci. 34, 5–19 10.1159/000336825
    1. Pannek K., Mathias J. L., Bigler E. D., Brown G., Taylor J. D., Rose S. E. (2011). The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology. Neuroimage 55, 133–141 10.1016/j.neuroimage.2010.12.010
    1. Parnell S. E., O'Leary-Moore S. K., Godin E. A., Dehart D. B., Johnson B. W., Johnson G. A., et al. (2009). Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8. Alcohol. Clin. Exp. Res. 33, 1001–1011 10.1111/j.1530-0277.2009.00921.x
    1. Pierpaoli C., Basser P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 10.1002/mrm.1910360612
    1. Pierpaoli C., Walker L., Irfanoglu M., Barnett A., Basser P., Chang L., et al. (2010). TORTOISE: an integrated software package for processing of diffusion MRI data, in ISMRM 18th Annual Meeting (Stockholm, Sweden: ), 1597 Available online at:
    1. Rose S. E., Chen F., Chalk J. B., Zelaya F. O., Strugnell W. E., Benson M., et al. (2000). Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. J. Neurol. Neurosurg. Psychiatry 69, 528–530 10.1136/jnnp.69.4.528
    1. Shrager R. I., Basser P. J. (1998). Anisotropically weighted MRI. Magn. Reson. Med. 40, 160–165 10.1002/mrm.1910400121
    1. Tristán-Vega A., Aja-Fernández S. (2010). Dwi filtering using joint information for dti and hardi. Med. Image Anal. 14, 205–218 10.1016/j.media.2009.11.001
    1. Tuch D. S. (2004). Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 10.1002/mrm.20279
    1. Wolff J. J., Gu H., Gerig G., Elison J. T., Styner M., Gouttard S., et al. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am. J. Psychiatry 169, 589–600 10.1176/appi.ajp.2011.11091447
    1. Woolrich M. W., Jbabdi S., Patenaude B., Chappell M., Makni S., Behrens T., et al. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage 45, S173–S186 10.1016/j.neuroimage.2008.10.055
    1. Yan C., Gong G., Wang J., Wang D., Liu D., Zhu C., et al. (2011). Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb. Cortex 21, 449–458 10.1093/cercor/bhq111
    1. Zhai G., Lin W., Wilber K., Gerig G., Gilmore J. (2003). Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-t head-only mr imaging unit. Radiology 229, 673–681 10.1148/radiol.2293021462
    1. Zhang J., Miller M. I., Plachez C., Richards L. J., Yarowsky P., van Zijl P., et al. (2005). Mapping postnatal mouse brain development with diffusion tensor microimaging. Neuroimage 26, 1042–1051 10.1016/j.neuroimage.2005.03.009
    1. Zhang J., van Zijl P. C. M., Mori S. (2002). Three-dimensional diffusion tensor magnetic resonance microimaging of adult mouse brain and hippocampus. Neuroimage 15, 892–901 10.1006/nimg.2001.1012
    1. Zhang T., Guo L., Li K., Jing C., Yin Y., Zhu D., et al. (2012). Predicting functional cortical ROIs via DTI-derived fiber shape models. Cereb. Cortex 22, 854–864 10.1093/cercor/bhr152

Source: PubMed

3
Abonnere