Correlation between end-tidal carbon dioxide and the degree of compression of heart cavities measured by transthoracic echocardiography during cardiopulmonary resuscitation for out-of-hospital cardiac arrest

Roman Skulec, Petr Vojtisek, Vladimir Cerny, Roman Skulec, Petr Vojtisek, Vladimir Cerny

Abstract

Background: The concept of personalized cardiopulmonary resuscitation (CPR) requires a parameter that reflects its hemodynamic efficiency. While intra-arrest ultrasound is increasingly implemented into the advanced life support, we realized a pre-hospital clinical study to evaluate whether the degree of compression of the right ventricle (RV) and left ventricle (LV) induced by chest compressions during CPR for out-of-hospital cardiac arrest (OHCA) and measured by transthoracic echocardiography correlates with the levels of end-tidal carbon dioxide (EtCO2) measured at the time of echocardiographic investigation.

Methods: Thirty consecutive patients resuscitated for OHCA were included in the study. Transthoracic echocardiography was performed from a subcostal view during ongoing chest compressions in all of them. This was repeated three times during CPR in each patient, and EtCO2 levels were registered. From each investigation, a video loop was recorded. Afterwards, maximal and minimal diameters of LV and RV were obtained from the recorded loops and the compression index of LV (LVCI) and RV (RVCI) was calculated as (maximal - minimal/maximal diameter) × 100. Maximal compression index (CImax) defined as the value of LVCI or RVCI, whichever was greater was also assessed. Correlations between EtCO2 and LVCI, RVCI, and CImax were expressed as Spearman's correlation coefficient (r).

Results: Evaluable echocardiographic records were found in 18 patients, and a total of 52 measurements of all parameters were obtained. Chest compressions induced significant compressions of all observed cardiac cavities (LVCI = 20.6 ± 13.8%, RVCI = 34.5 ± 21.6%, CImax = 37.4 ± 20.2%). We identified positive correlation of EtCO2 with LVCI (r = 0.672, p < 0.001) and RVCI (r = 0.778, p < 0.001). The strongest correlation was between EtCO2 and CImax (r = 0.859, p < 0.001). We identified that a CImax cut-off level of 17.35% predicted to reach an EtCO2 level > 20 mmHg with 100% sensitivity and specificity.

Conclusions: Evaluable echocardiographic records were reached in most of the patients. EtCO2 positively correlated with all parameters under consideration, while the strongest correlation was found between CImax and EtCO2. Therefore, CImax is a candidate parameter for the guidance of hemodynamic-directed CPR.

Trial registration: ClinicalTrial.gov, NCT03852225 . Registered 21 February 2019 - Retrospectively registered.

Keywords: End-tidal dioxide; Hemodynamic-directed cardiopulmonary resuscitation; Ultrasound.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Measurement of the maximal and minimal diameters of the right and left ventricles for calculation of compression indexes. a The arrow indicates the distance of the measurement site from the mitral annulus. Measured values of maximal right and left ventricular diameters. b Measurements of the minimal diameters of the right and left ventricles at the same distance from the mitral annulus as the measurements at a
Fig. 2
Fig. 2
Correlation of EtCO2 with LVCI and RVCI. EtCO2—end-tidal carbon dioxide level, LVCI—left ventricular compression index, RVCI—right ventricular compression index
Fig. 3
Fig. 3
Correlation between EtCO2 and CImax. EtCO2—end-tidal carbon dioxide level, CImax—maximal compression index
Fig. 4
Fig. 4
Correlation between RVCI and LVCI. LVCI—left ventricular compression index, RVCI—right ventricular compression index
Fig. 5
Fig. 5
The ROC curves for prediction of different EtCO2 levels by CImax. On the left, prediction of EtCO2 > 15 mmHg, in the middle prediction of EtCO2 > 20 mmHg and on the right prediction of EtCO2 > 25 mmHg. EtCO2—end-tidal carbon dioxide level

References

    1. Marquez AM, Morgan RW, Ross CE, Berg RA, Sutton RM. Physiology-directed cardiopulmonary resuscitation. Curr Opin Crit Care. 2018;24:143–150. doi: 10.1097/MCC.0000000000000499.
    1. Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, et al. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128:417–435. doi: 10.1161/CIR.0b013e31829d8654.
    1. Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European Resuscitation Council guidelines for resuscitation 2015. Section 3. Adult advanced life support. Resuscitation. 2015;95:100–147. doi: 10.1016/j.resuscitation.2015.07.016.
    1. Skulec R, Truhlar A, Knor J, Cerny V. TRACE: a new protocol for ultrasound examination during out-of-hospital cardiac arrest. Resuscitation. 2015;96:48. doi: 10.1016/j.resuscitation.2015.09.111.
    1. Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for out-of-hospital cardiac arrest. Resuscitation. 2015;96:328–340. doi: 10.1016/j.resuscitation.2014.11.002.
    1. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39. doi: 10.1016/j.echo.2014.10.003.
    1. Hwang K, Chon S-B, Im JG. The optimum chest compression site with regard to heart failure demonstrated by computed tomography. Am J Emerg Med. 2017;35:1899–1906. doi: 10.1016/j.ajem.2017.07.041.
    1. Segal N, Robinson AE, Berger PS, Lick MC, Moore JC, Salverda BJ, et al. Chest compliance is altered by static compression and decompression as revealed by changes in anteroposterior chest height during CPR using the ResQPUMP in a human cadaver model. Resuscitation. 2017;116:56–59. doi: 10.1016/j.resuscitation.2017.04.032.
    1. Friess SH, Sutton RM, Bhalala U, Maltese MR, Naim MY, Bratinov G, et al. Hemodynamic directed cardiopulmonary resuscitation improves short-term survival from ventricular fibrillation cardiac arrest. Crit Care Med. 2013;41:2698–2704. doi: 10.1097/CCM.0b013e318298ad6b.
    1. Sutton RM, Friess SH, Maltese MR, Naim MY, Bratinov G, Weiland TR, et al. Hemodynamic-directed cardiopulmonary resuscitation during in-hospital cardiac arrest. Resuscitation. 2014;85:983–986. doi: 10.1016/j.resuscitation.2014.04.015.
    1. Morgan RW, Kilbaugh TJ, Shoap W, Bratinov G, Lin Y, Hsieh T-C, et al. A hemodynamic-directed approach to pediatric cardiopulmonary resuscitation (HD-CPR) improves survival. Resuscitation. 2017;111:41–47. doi: 10.1016/j.resuscitation.2016.11.018.
    1. Sutton RM, Friess SH, Bhalala U, Maltese MR, Naim MY, Bratinov G, et al. Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest. Resuscitation. 2013;84:696–701. doi: 10.1016/j.resuscitation.2012.10.023.
    1. Friess SH, Sutton RM, French B, Bhalala U, Maltese MR, Naim MY, et al. Hemodynamic directed CPR improves cerebral perfusion pressure and brain tissue oxygenation. Resuscitation. 2014;85:1298–1303. doi: 10.1016/j.resuscitation.2014.05.040.
    1. Lautz AJ, Morgan RW, Karlsson M, Mavroudis CD, Ko TS, Licht DJ, et al. Hemodynamic-directed cardiopulmonary resuscitation improves neurologic outcomes and mitochondrial function in the heart and brain. Crit Care Med. 2019;47:e241–e249. doi: 10.1097/CCM.0000000000003620.
    1. Sainio M, Hoppu S, Huhtala H, Eilevstjønn J, Olkkola KT, Tenhunen J. Simultaneous beat-to-beat assessment of arterial blood pressure and quality of cardiopulmonary resuscitation in out-of-hospital and in-hospital settings. Resuscitation. 2015;96:163–169. doi: 10.1016/j.resuscitation.2015.08.004.
    1. Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318:607–611. doi: 10.1056/NEJM198803103181005.
    1. Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital. Circulation. 2013;128:417–435. doi: 10.1161/CIR.0b013e31829d8654.
    1. Idris AH, Staples ED, O’Brien DJ, Melker RJ, Rush WJ, Del Duca KD, et al. End-tidal carbon dioxide during extremely low cardiac output. Ann Emerg Med. 1994;23:568–572. doi: 10.1016/S0196-0644(94)70080-X.
    1. Paiva EF, Paxton JH, O’Neil BJ. The use of end-tidal carbon dioxide (ETCO2) measurement to guide management of cardiac arrest: a systematic review. Resuscitation. 2018;123:1–7. doi: 10.1016/j.resuscitation.2017.12.003.
    1. Sanders AB, Atlas M, Ewy GA, Kern KB, Bragg S. Expired PCO2 as an index of coronary perfusion pressure. Am J Emerg Med. 1985;3:147–149. doi: 10.1016/0735-6757(85)90039-7.
    1. Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med. 1985;13:907–909. doi: 10.1097/00003246-198511000-00011.
    1. Lewis LM, Stothert J, Standeven J, Chandel B, Kurtz M, Fortney J. Correlation of end-tidal CO2 to cerebral perfusion during CPR. Ann Emerg Med. 1992;21:1131–1134. doi: 10.1016/S0196-0644(05)80658-4.
    1. Sandroni C, De Santis P, D’Arrigo S. Capnography during cardiac arrest. Resuscitation. 2018;132:73–77. doi: 10.1016/j.resuscitation.2018.08.018.
    1. Murphy RA, Bobrow BJ, Spaite DW, Hu C, McDannold R, Vadeboncoeur TF. Association between prehospital CPR quality and end-tidal carbon dioxide levels in out-of-hospital cardiac arrest. Prehospital Emerg Care. 2016;20:369–377. doi: 10.3109/10903127.2015.1115929.
    1. Sheak KR, Wiebe DJ, Leary M, Babaeizadeh S, Yuen TC, Zive D, et al. Quantitative relationship between end-tidal carbon dioxide and CPR quality during both in-hospital and out-of-hospital cardiac arrest. Resuscitation. 2015;89:149–154. doi: 10.1016/j.resuscitation.2015.01.026.
    1. Ewy GA. The mechanism of blood flow during chest compressions for cardiac arrest is probably influenced by the patient’s chest configuration. Acute Med Surg. 2018;5:236–240. doi: 10.1002/ams2.336.
    1. Feneley MP, Maier GW, Gaynor JW, Gall SA, Kisslo JA, Davis JW, et al. Sequence of mitral valve motion and transmitral blood flow during manual cardiopulmonary resuscitation in dogs. Circulation. 1987;76:363–375. doi: 10.1161/01.CIR.76.2.363.
    1. Rudikoff MT, Maughan WL, Effron M, Freund P, Weisfeldt ML. Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation. 1980;61:345–352. doi: 10.1161/01.CIR.61.2.345.
    1. Porter TR, Ornato JP, Guard CS, Roy VG, Burns CA, Nixon JV. Transesophageal echocardiography to assess mitral valve function and flow during cardiopulmonary resuscitation. Am J Cardiol. 1992;70:1056–1060. doi: 10.1016/0002-9149(92)90360-B.

Source: PubMed

3
Abonnere