The urgent need for more potent antiretroviral therapy in low-income countries to achieve UNAIDS 90-90-90 and complete eradication of AIDS by 2030

Emmanuel Ndashimye, Eric J Arts, Emmanuel Ndashimye, Eric J Arts

Abstract

Background: Over 90% of Human Immunodeficiency Virus (HIV) infected individuals will be on treatment by 2020 under UNAIDS 90-90-90 global targets. Under World Health Organisation (WHO) "Treat All" approach, this number will be approximately 36.4 million people with over 98% in low-income countries (LICs).

Main body: Pretreatment drug resistance (PDR) largely driven by frequently use of non-nucleoside reverse transcriptase inhibitors (NNRTIs), efavirenz and nevirapine, has been increasing with roll-out of combined antiretroviral therapy (cART) with 29% annual increase in some LICs countries. PDR has exceeded 10% in most LICs which warrants change of first line regimen to more robust classes under WHO recommendations. If no change in regimens is enforced in LICs, it's estimated that over 16% of total deaths, 9% of new infections, and 8% of total cART costs will be contributed by HIV drug resistance by 2030. Less than optimal adherence, and adverse side effects associated with currently available drug regimens, all pose a great threat to achievement of 90% viral suppression and elimination of AIDS as a public health threat by 2030. This calls for urgent introduction of policies that advocate for voluntary and compulsory drug licensing of new more potent drugs which should also emphasize universal access of these drugs to all individuals worldwide.

Conclusions: The achievement of United Nations Programme on HIV and AIDS 2020 and 2030 targets in LICs depends on access to active cART with higher genetic barrier to drug resistance, better safety, and tolerability profiles. It's also imperative to strengthen quality service delivery in terms of retention of patients to treatment, support for adherence to cART, patient follow up and adequate drug stocks to help achieve a free AIDS generation.

Keywords: AIDS free generation; Adherence; Antiretroviral therapy; HIV-1 drug resistance; Integrase inhibitors; Low-income countries; UNAIDS 90–90-90 target.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. UNAIDS . 90-90-90. An ambitious treatment target to help end the AIDS epidemic. 2014.
    1. Gourlay A, Noori T, Pharris A, Axelsson M, Costagliola D, Cowan S, et al. The human immunodeficiency virus continuum of Care in European Union Countries in 2013: data and challenges. Clin Infect Dis. 2017;64(12):1644–1656. doi: 10.1093/cid/cix212.
    1. UNAIDS. ENDING AIDS-Progress towards the 90–90-90 targets. . Accessed 18 Jan 2019.
    1. UNAIDS. Miles to go-closing gaps, breaking barriers, righting injustices. . Accessed 16 Jan 2019.
    1. Gupta RK, Gregson J, Parkin N, Haile-Selassie H, Tanuri A, Andrade Forero L, et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis. Lancet Infect Dis. 2018;18(3):346–355. doi: 10.1016/S1473-3099(17)30702-8.
    1. WHO. HIV drug resistance report 2017. . Accessed 22 Jan 2019.
    1. WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. . Accessed 02 Feb 2019.
    1. Boender TS, Hoenderboom BM, Sigaloff KC, Hamers RL, Wellington M, Shamu T, et al. Pretreatment HIV drug resistance increases regimen switches in sub-Saharan Africa. Clin Infect Dis. 2015;61(11):1749–1758.
    1. WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection 2016.. Accessed 15 Feb 2019.
    1. Phillips AN, Stover J, Cambiano V, Nakagawa F, Jordan MR, Pillay D, et al. Impact of HIV drug resistance on HIV/AIDS-associated mortality, new infections, and antiretroviral therapy program costs in sub–Saharan Africa. J Infect Dis. 2017;215(9):1362–1365. doi: 10.1093/infdis/jix089.
    1. Brenner B, Turner D, Oliveira M, Moisi D, Detorio M, Carobene M, et al. A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors. AIDS. 2003;17(1):F1–F5. doi: 10.1097/00002030-200301030-00001.
    1. Ndashimye E, Avino M, Kyeyune F, et al. Absence of HIV-1 Drug Resistance Mutations Supports the Use of Dolutegravir in Uganda. AIDS Res Hum Retroviruses. 2018;34(5):404–14.
    1. Steegen K, Bronze M, Papathanasopoulos MA, van Zyl G, Goedhals D, Van Vuuren C, et al. Prevalence of antiretroviral drug resistance in patients who are not responding to protease inhibitor-based treatment: results from the first National Survey in South Africa. J Infect Dis. 2016;214(12):1826–1830. doi: 10.1093/infdis/jiw491.
    1. Rawizza HE, Chaplin B, Meloni ST, Darin KM, Olaitan O, Scarsi KK, et al. Accumulation of protease mutations among patients failing second-line antiretroviral therapy and response to salvage therapy in Nigeria. PLoS One. 2013;8(9):e73582. doi: 10.1371/journal.pone.0073582.
    1. TenoRes Study Group et al. Lancet Infect Dis. 2016;16(5):565–575. doi: 10.1016/S1473-3099(15)00536-8.
    1. Mannheimer S, Friedland G, Matts J, Child C, Chesney M. The consistency of adherence to antiretroviral therapy predicts biologic outcomes for human immunodeficiency virus-infected persons in clinical trials. Clin Infect Dis. 2002;34(8):1115–1121. doi: 10.1086/339074.
    1. Garcia de Olalla P, Knobel H, Carmona A, Guelar A, Lopez-Colomes JL, Cayla JA. Impact of adherence and highly active antiretroviral therapy on survival in HIV-infected patients. J Acquir Immune Defic Syndr. 2002;30(1):105–110. doi: 10.1097/00042560-200205010-00014.
    1. Berg KM, Cooperman NA, Newville H, Arnsten JH. Self-efficacy and depression as mediators of the relationship between pain and antiretroviral adherence. AIDS Care. 2009;21(2):244–248. doi: 10.1080/09540120802001697.
    1. Mark D, Armstrong A, Andrade C, Penazzato M, Hatane L, Taing L, et al. HIV treatment and care services for adolescents: a situational analysis of 218 facilities in 23 sub-Saharan African countries. J Int AIDS Soc. 2017;20(Suppl 3):21591.
    1. Mills EJ, Lester R, Thorlund K, Lorenzi M, Muldoon K, Kanters S, et al. Interventions to promote adherence to antiretroviral therapy in Africa: a network meta-analysis. Lancet HIV. 2014;1(3):e104–e111. doi: 10.1016/S2352-3018(14)00003-4.
    1. Orkin C, DeJesus E, Khanlou H, Stoehr A, Supparatpinyo K, Lathouwers E, et al. Final 192-week efficacy and safety of once-daily darunavir/ritonavir compared with lopinavir/ritonavir in HIV-1-infected treatment-naive patients in the ARTEMIS trial. HIV Med. 2013;14(1):49–59. doi: 10.1111/j.1468-1293.2012.01060.x.
    1. LaFleur J, Bress AP, Rosenblatt L, Crook J, Sax PE, Myers J, et al. Cardiovascular outcomes among HIV-infected veterans receiving atazanavir. AIDS. 2017;31(15):2095–2106. doi: 10.1097/QAD.0000000000001594.
    1. Boerma RS, Sigaloff KC, Akanmu AS, Inzaule S, Boele van Hensbroek M, Rinke de Wit TF, et al. Alarming increase in pretreatment HIV drug resistance in children living in sub-Saharan Africa: a systematic review and meta-analysis. J Antimicrob Chemother. 2017;72(2):365–371. doi: 10.1093/jac/dkw463.
    1. Cohen CJ, Andrade-Villanueva J, Clotet B, Fourie J, Johnson MA, Ruxrungtham K, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naive adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. Lancet. 2011;378(9787):229–237. doi: 10.1016/S0140-6736(11)60983-5.
    1. Baxter JD, Dunn D, White E, Sharma S, Geretti AM, Kozal MJ, et al. Global HIV-1 transmitted drug resistance in the INSIGHT strategic timing of AntiRetroviral treatment (START) trial. HIV Med. 2015;16(Suppl 1):77–87. doi: 10.1111/hiv.12236.
    1. Bansi L, Geretti AM, Dunn D, Hill T, Green H, Fearnhill E, et al. Impact of transmitted drug-resistance on treatment selection and outcome of first-line highly active antiretroviral therapy (HAART) J Acquir Immune Defic Syndr. 2010;53(5):633–639.
    1. Phanuphak P, Sirivichayakul S, Jiamsakul A, Sungkanuparph S, Kumarasamy N, Lee MP, et al. Transmitted drug resistance and antiretroviral treatment outcomes in non-subtype B HIV-1-infected patients in South East Asia. J Acquir Immune Defic Syndr. 2014;66(1):74–79. doi: 10.1097/QAI.0000000000000108.
    1. Ndembi N, Lyagoba F, Nanteza B, Kushemererwa G, Serwanga J, Katongole-Mbidde E, et al. Transmitted antiretroviral drug resistance surveillance among newly HIV type 1-diagnosed women attending an antenatal clinic in Entebbe. Uganda AIDS Res Hum Retroviruses. 2008;24(6):889–895. doi: 10.1089/aid.2007.0317.
    1. Ndembi N, Hamers RL, Sigaloff KC, Lyagoba F, Magambo B, Nanteza B, et al. Transmitted antiretroviral drug resistance among newly HIV-1 diagnosed young individuals in Kampala. Aids. 2011;25(7):905–910. doi: 10.1097/QAD.0b013e328346260f.
    1. Frentz D, Boucher CA, van de Vijver DA. Temporal changes in the epidemiology of transmission of drug-resistant HIV-1 across the world. AIDS Rev. 2012;14(1):17–27.
    1. Derdelinckx I, Van Laethem K, Maes B, Schrooten Y, De Wit S, Florence E, et al. Current levels of drug resistance among therapy-naive HIV-infected patients have significant impact on treatment response. J Acquir Immune Defic Syndr. 2004;37(5):1664–1666. doi: 10.1097/00126334-200412150-00022.
    1. Hofstra LM, Sauvageot N, Albert J, Alexiev I, Garcia F, Struck D, et al. Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe. Clin Infect Dis. 2016;62(5):655–663. doi: 10.1093/cid/civ963.
    1. Kyeyune F, Gibson RM, Nankya I, Venner C, Metha S, Akao J, et al. Low-frequency drug resistance in HIV-infected Ugandans on antiretroviral treatment is associated with regimen failure. Antimicrob Agents Chemother. 2016;60(6):3380–3397. doi: 10.1128/AAC.00038-16.
    1. WHO. The availability and use of diagnostics for HIV: a 2012/2013 WHO survey of low-and middle-income countries. . Accessed 14 Jan 2019.
    1. Kityo C, Boerma RS, Sigaloff KCE, Kaudha E, Calis JCJ, Musiime V, et al. Pretreatment HIV drug resistance results in virological failure and accumulation of additional resistance mutations in Ugandan children. J Antimicrob Chemother. 2017;72(9):2587–2595. doi: 10.1093/jac/dkx188.
    1. Médecins Sans Frontières. Untangling the web of antiretroviral price reductions 2016. 18th Edition. . Accessed 13 Jan 2019.
    1. Hill A, et al. Generic treatments for HIV, HBV, HCV, TB could be mass produced for <$90 per patient. 9th international AIDS society conference on HIV science, Paris, abstract TUAD0104, 2017.
    1. Godfrey C, Thigpen MC, Crawford KW, et al. Global HIV Antiretroviral Drug Resistance: A Perspective and Report of a National Institute of Allergy and Infectious Diseases Consultation. J Infect Dis. 2017;216(suppl_9):S798–S800.
    1. UNITAID. Kenya to introduce better treatment for people living with HIV 2017. . Accessed 12 Jan 2019.
    1. Zash R, Jacobson DL, Diseko M, Mayondi G, Mmalane M, Essex M, et al. Comparative safety of dolutegravir-based or efavirenz-based antiretroviral treatment started during pregnancy in Botswana: an observational study. Lancet Glob Health. 2018;6(7):e804–ee10. doi: 10.1016/S2214-109X(18)30218-3.
    1. Zash R, Makhema J, Shapiro RL. Neural-tube defects with Dolutegravir treatment from the time of conception. N Engl J Med. 2018;379(10):979–981. doi: 10.1056/NEJMc1807653.
    1. WHO. Potential safety issue affecting women living with HIV using dolutegravir at the time of conception .. Accessed 12 Jan 2019.
    1. Martinez de Tejada B. Birth defects after exposure to Efavirenz-based antiretroviral therapy at conception/first trimester of pregnancy: a multicohort analysis. J Acquir Immune Defic Syndr. 2019;80(3):316–324. doi: 10.1097/QAI.0000000000001922.
    1. Norwood J, Turner M, Bofill C, Rebeiro P, Shepherd B, Bebawy S, et al. Brief report: weight gain in persons with HIV switched from Efavirenz-based to integrase Strand transfer inhibitor-based regimens. J Acquir Immune Defic Syndr. 2017;76(5):527–531. doi: 10.1097/QAI.0000000000001525.
    1. Fenton C, Perry CM. Darunavir: in the treatment of HIV-1 infection. Drugs. 2007;67(18):2791–2801. doi: 10.2165/00003495-200767180-00010.
    1. Clotet B, Bellos N, Molina JM, Cooper D, Goffard JC, Lazzarin A, et al. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet. 2007;369(9568):1169–1178. doi: 10.1016/S0140-6736(07)60497-8.
    1. Poveda E, de Mendoza C, Parkin N, Choe S, Garcia-Gasco P, Corral A, et al. Evidence for different susceptibility to tipranavir and darunavir in patients infected with distinct HIV-1 subtypes. AIDS. 2008;22(5):611–616. doi: 10.1097/QAD.0b013e3282f51eb9.
    1. Andries K, Azijn H, Thielemans T, Ludovici D, Kukla M, Heeres J, et al. TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2004;48(12):4680–4686. doi: 10.1128/AAC.48.12.4680-4686.2004.
    1. Llibre JM, Santos JR, Puig T, Molto J, Ruiz L, Paredes R, et al. Prevalence of etravirine-associated mutations in clinical samples with resistance to nevirapine and efavirenz. J Antimicrob Chemother. 2008;62(5):909–913. doi: 10.1093/jac/dkn297.
    1. Feng M, Sachs NA, Xu M, Grobler J, Blair W, Hazuda DJ, et al. Doravirine suppresses common nonnucleoside reverse transcriptase inhibitor-associated mutants at clinically relevant concentrations. Antimicrob Agents Chemother. 2016;60(4):2241–2247. doi: 10.1128/AAC.02650-15.
    1. Squires K et al. Fixed dose combination of doravirine/lamivudine/TDF is non-inferior to efavirenz/emitricabine/TDF in treatment-naive adults with HIV-1 infection:week 48 results of the phase 3 DRVE-AHEAD study. 9th international AIDS society conference on HIV science, Paris, abstract TUAB0104LB, 2017.
    1. Randovitz R, et al. Safety, tolerability and pharmacokinetics of long-acting injectable cabotegravir in low-risk HIV-infected women and men: HPTN 077. 9th international AIDS society coneference on HIV science, Paris, abstract TUAC0106LB. 2017.
    1. Gallant J, et al. A phase 3 randomised controlled clinical trial of bictegravir in a fixed dose combination, B/F/TAF, vs ABC/DTG/3TC in treatment-naive adults at week 48. 9th international AIDS society conference on HIV science, Paris, abstract MOAB0105LB. 2017.
    1. Matthews RP, et al. Single doses as low as 0.5 mg of the novel NRTTI MK-8591 suppress HIV for at least seven days. 9th International AIDS Society Conference on HIV Science, Paris, abstract TUPDB0202LB, 2017.
    1. WHO. Global action plan on HIV drug resistance 2017–2021. . Accessed 14 Jan 2019.
    1. Salou M, Butel C, Konou AA, Ekouevi DK, Vidal N, Dossim S, et al. High rates of drug resistance among newly diagnosed HIV-infected children in the National Prevention of mother-to-child transmission program in Togo. Pediatr Infect Dis J. 2016;35(8):879–885. doi: 10.1097/INF.0000000000001203.
    1. Poppe LK, Chunda-Liyoka C, Kwon EH, Gondwe C, West JT, Kankasa C, et al. HIV drug resistance in infants increases with changing prevention of mother-to-child transmission regimens. AIDS. 2017;31(13):1885–1889. doi: 10.1097/QAD.0000000000001569.
    1. Jordan MR, Penazzato M, Cournil A, Vubil A, Jani I, Hunt G, et al. Human immunodeficiency virus (HIV) drug resistance in African infants and young children newly diagnosed with HIV: a multicountry analysis. Clin Infect Dis. 2017;65(12):2018–2025. doi: 10.1093/cid/cix698.
    1. Kanthula R, Rossouw TM, Feucht UD, van Dyk G, Beck IA, Silverman R, et al. Persistence of HIV drug resistance among south African children given nevirapine to prevent mother-to-child-transmission. AIDS. 2017;31(8):1143–1148. doi: 10.1097/QAD.0000000000001446.
    1. Kuhn L, Hunt G, Technau KG, Coovadia A, Ledwaba J, Pickerill S, et al. Drug resistance among newly diagnosed HIV-infected children in the era of more efficacious antiretroviral prophylaxis. AIDS. 2014;28(11):1673–1678. doi: 10.1097/QAD.0000000000000261.
    1. Kityo C, Sigaloff KC, Sonia Boender T, Kaudha E, Kayiwa J, Musiime V, et al. HIV drug resistance among children initiating first-line antiretroviral treatment in Uganda. AIDS Res Hum Retrovir. 2016;32(7):628–635. doi: 10.1089/aid.2015.0215.
    1. Chimukangara B, Lessells RJ, Rhee S-Y, Giandhari J, Kharsany ABM, Naidoo K, et al. Trends in pretreatment HIV-1 drug resistance in antiretroviral therapy naive adults in South Africa, 2000-2016: a pooled sequence analysis. Lancet. 2019;9:26–34.
    1. Afonso JM, Bello G, Guimaraes ML, Sojka M, Morgado MG. HIV-1 genetic diversity and transmitted drug resistance mutations among patients from the north, central and south regions of Angola. PLoS One. 2012;7(8):e42996. doi: 10.1371/journal.pone.0042996.
    1. Rowley CF, MacLeod IJ, Maruapula D, Lekoko B, Gaseitsiwe S, Mine M, et al. Sharp increase in rates of HIV transmitted drug resistance at antenatal clinics in Botswana demonstrates the need for routine surveillance. J Antimicrob Chemother. 2016;71(5):1361–1366. doi: 10.1093/jac/dkv500.
    1. Perez L, Kouri V, Aleman Y, Abrahantes Y, Correa C, Aragones C, et al. Antiretroviral drug resistance in HIV-1 therapy-naive patients in Cuba. Infect Genet Evol. 2013;16:144–150. doi: 10.1016/j.meegid.2013.02.002.
    1. Avila-Rios S, Garcia-Morales C, Matias-Florentino M, Romero-Mora KA, Tapia-Trejo D, Quiroz-Morales VS, et al. Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: a nationally representative 2015 WHO survey. Lancet HIV. 2016;3(12):e579–ee91. doi: 10.1016/S2352-3018(16)30119-9.
    1. Lavu E, Kave E, Mosoro E, Markby J, Aleksic E, Gare J, et al. High levels of transmitted HIV drug resistance in a study in Papua New Guinea. PLoS One. 2017;12(2):e0170265. doi: 10.1371/journal.pone.0170265.
    1. WHO. HIV drug resistance surveillance guidance-2015 update. . Accessed 2 Jan 2019.

Source: PubMed

3
Abonnere