Prospective surveillance study to detect antimalarial drug resistance, gene deletions of diagnostic relevance and genetic diversity of Plasmodium falciparum in Mozambique: protocol

Alfredo Mayor, Clemente da Silva, Eduard Rovira-Vallbona, Arantxa Roca-Feltrer, Craig Bonnington, Alexandra Wharton-Smith, Bryan Greenhouse, Caitlin Bever, Arlindo Chidimatembue, Caterina Guinovart, Joshua L Proctor, Maria Rodrigues, Neide Canana, Paulo Arnaldo, Simone Boene, Pedro Aide, Sonia Enosse, Francisco Saute, Baltazar Candrinho, Alfredo Mayor, Clemente da Silva, Eduard Rovira-Vallbona, Arantxa Roca-Feltrer, Craig Bonnington, Alexandra Wharton-Smith, Bryan Greenhouse, Caitlin Bever, Arlindo Chidimatembue, Caterina Guinovart, Joshua L Proctor, Maria Rodrigues, Neide Canana, Paulo Arnaldo, Simone Boene, Pedro Aide, Sonia Enosse, Francisco Saute, Baltazar Candrinho

Abstract

Introduction: Genomic data constitute a valuable adjunct to routine surveillance that can guide programmatic decisions to reduce the burden of infectious diseases. However, genomic capacities remain low in Africa. This study aims to operationalise a functional malaria molecular surveillance system in Mozambique for guiding malaria control and elimination.

Methods and analyses: This prospective surveillance study seeks to generate Plasmodium falciparum genetic data to (1) monitor molecular markers of drug resistance and deletions in rapid diagnostic test targets; (2) characterise transmission sources in low transmission settings and (3) quantify transmission levels and the effectiveness of antimalarial interventions. The study will take place across 19 districts in nine provinces (Maputo city, Maputo, Gaza, Inhambane, Niassa, Manica, Nampula, Zambézia and Sofala) which span a range of transmission strata, geographies and malaria intervention types. Dried blood spot samples and rapid diagnostic tests will be collected across the study districts in 2022 and 2023 through a combination of dense (all malaria clinical cases) and targeted (a selection of malaria clinical cases) sampling. Pregnant women attending their first antenatal care visit will also be included to assess their value for molecular surveillance. We will use a multiplex amplicon-based next-generation sequencing approach targeting informative single nucleotide polymorphisms, gene deletions and microhaplotypes. Genetic data will be incorporated into epidemiological and transmission models to identify the most informative relationship between genetic features, sources of malaria transmission and programmatic effectiveness of new malaria interventions. Strategic genomic information will be ultimately integrated into the national malaria information and surveillance system to improve the use of the genetic information for programmatic decision-making.

Ethics and dissemination: The protocol was reviewed and approved by the institutional (CISM) and national ethics committees of Mozambique (Comité Nacional de Bioética para Saúde) and Spain (Hospital Clinic of Barcelona). Project results will be presented to all stakeholders and published in open-access journals.

Trial registration number: NCT05306067.

Keywords: Epidemiology; Genetics; MOLECULAR BIOLOGY; Molecular diagnostics; PARASITOLOGY; Public health.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Malaria genomic use cases and National Malaria Control Programme (NMCP) decisions. The letter on the left (A–D) expresses the level of action described in the WHO Technical consultation on the role of parasite and anopheline genetics in malaria surveillance. (A) Immediate action; (B) medium-term action; (C) long-term action. Arrows in colour at the right express the research required for action in the medium-term and long-term (grey, not essential for action; green, immediate evidence; yellow, medium-term evidence). ANC, antenatal care clinics; IPT, intermittent preventive treatment; MDA, mass drug administration; rfMDA, reactive focal MDA; SMC, seasonal malaria chemoprevention.
Figure 2
Figure 2
Low and medium-to-high transmission study districts targeted in the protocol. ANC, antental care clinics.
Figure 3
Figure 3
Modelling approaches for malaria genomics. Overview of the components of a joint malaria epidemiology-genetic model, that builds on the capabilities of two models previously developed at the Institute of Disease Modelling (a malaria genetic model calibrated to a longitudinal genetic study in Senegal and a disease transmission model calibrated with the Magude data).

References

    1. Armstrong GL, MacCannell DR, Taylor J, et al. . Pathogen genomics in public health. N Engl J Med 2019;381:2569–80. 10.1056/NEJMsr1813907
    1. Inzaule SC, Tessema SK, Kebede Y, et al. . Genomic-informed pathogen surveillance in Africa: opportunities and challenges. Lancet Infect Dis 2021;21:e281–9. 10.1016/S1473-3099(20)30939-7
    1. Tessema SK, Raman J, Duffy CW, et al. . Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa. Malar J 2019;18:268. 10.1186/s12936-019-2880-1
    1. WHO . Meeting report of the technical consultation on the role of parasite and anopheline genetics in malaria surveillance, 2019. Available:
    1. Gupta H, Macete E, Bulo H, et al. . Drug-Resistant polymorphisms and copy numbers in Plasmodium falciparum, Mozambique, 2015. Emerg Infect Dis 2018;24:40–8. 10.3201/eid2401.170864
    1. Gupta H, Matambisso G, Galatas B, et al. . Molecular surveillance of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum isolates from Mozambique. Malar J 2017;16:416. 10.1186/s12936-017-2061-z
    1. Gamboa D, Ho M-F, Bendezu J, et al. . A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 2010;5:e8091. 10.1371/journal.pone.0008091
    1. Agaba BB, Yeka A, Nsobya S, et al. . Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: review of published studies 2010-2019. Malar J 2019;18:355. 10.1186/s12936-019-2987-4
    1. Mobegi VA, Duffy CW, Amambua-Ngwa A, et al. . Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol 2014;31:1490–9. 10.1093/molbev/msu106
    1. Simam J, Rono M, Ngoi J, et al. . Gene copy number variation in natural populations of Plasmodium falciparum in eastern Africa. BMC Genomics 2018;19:372. 10.1186/s12864-018-4689-7
    1. Schaffner SF, Taylor AR, Wong W, et al. . hmmIBD: software to infer pairwise identity by descent between haploid genotypes. Malar J 2018;17:196. 10.1186/s12936-018-2349-7
    1. Rice BL, Golden CD, Anjaranirina EJG, et al. . Genetic evidence that the Makira region in northeastern Madagascar is a hotspot of malaria transmission. Malar J 2016;15:596. 10.1186/s12936-016-1644-4
    1. Spanakos G, Snounou G, Pervanidou D, et al. . Genetic spatiotemporal anatomy of Plasmodium vivax malaria episodes in Greece, 2009-2013. Emerg Infect Dis 2018;24:541–8. 10.3201/eid2403.170605
    1. Chang H-H, Wesolowski A, Sinha I, et al. . Mapping imported malaria in Bangladesh using parasite genetic and human mobility data. Elife 2019;8. 10.7554/eLife.43481. [Epub ahead of print: 02 Apr 2019].
    1. Chenet SM, Silva-Flannery L, Lucchi NW, et al. . Molecular characterization of a cluster of imported malaria cases in Puerto Rico. Am J Trop Med Hyg 2017;97:758–60. 10.4269/ajtmh.16-0837
    1. Patel JC, Taylor SM, Juliao PC, et al. . Genetic evidence of importation of drug-resistant Plasmodium falciparum to Guatemala from the Democratic Republic of the Congo. Emerg Infect Dis 2014;20:932–40. 10.3201/eid2006.131204
    1. Daniels RF, Schaffner SF, Bennett A, et al. . Evidence for reduced malaria parasite population after application of population-level antimalarial drug strategies in southern Province, Zambia. Am J Trop Med Hyg 2020;103:66–73. 10.4269/ajtmh.19-0666
    1. Daniels RF, Schaffner SF, Wenger EA, et al. . Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci U S A 2015;112:7067–72. 10.1073/pnas.1505691112
    1. Daniels R, Chang H-H, Séne PD, et al. . Genetic surveillance detects both clonal and epidemic transmission of malaria following enhanced intervention in Senegal. PLoS One 2013;8:e60780. 10.1371/journal.pone.0060780
    1. Nkhoma SC, Nair S, Al-Saai S, et al. . Population genetic correlates of declining transmission in a human pathogen. Mol Ecol 2013;22:273–85. 10.1111/mec.12099
    1. Sisya TJ, Kamn'gona RM, Vareta JA, et al. . Subtle changes in Plasmodium falciparum infection complexity following enhanced intervention in Malawi. Acta Trop 2015;142:108–14. 10.1016/j.actatropica.2014.11.008
    1. Daniels R, Volkman SK, Milner DA, et al. . A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malar J 2008;7:223. 10.1186/1475-2875-7-223
    1. Chang H-H, Worby CJ, Yeka A, et al. . The real McCOIL: a method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS Comput Biol 2017;13:e1005348. 10.1371/journal.pcbi.1005348
    1. Mayor A, Menéndez C, Walker PGT. Targeting pregnant women for malaria surveillance. Trends Parasitol 2019;35:677–86. 10.1016/j.pt.2019.07.005
    1. Kwesigabo G, Killewo JZ, Urassa W, et al. . Monitoring of HIV-1 infection prevalence and trends in the general population using pregnant women as a sentinel population: 9 years experience from the Kagera region of Tanzania. J Acquir Immune Defic Syndr 2000;23:410–7. 10.1097/00126334-200004150-00008
    1. Korenromp EL, Mahiané SG, Nagelkerke N, et al. . Syphilis prevalence trends in adult women in 132 countries - estimations using the Spectrum Sexually Transmitted Infections model. Sci Rep 2018;8:11503. 10.1038/s41598-018-29805-9
    1. Galatas B, Bassat Q, Mayor A. Malaria parasites in the asymptomatic: looking for the hay in the haystack. Trends Parasitol 2016;32:296–308. 10.1016/j.pt.2015.11.015
    1. Hellewell J, Walker P, Ghani A, et al. . Using ante-natal clinic prevalence data to monitor temporal changes in malaria incidence in a humanitarian setting in the Democratic Republic of Congo. Malar J 2018;17:312. 10.1186/s12936-018-2460-9
    1. Mayor A, Bardají A, Macete E, et al. . Changing trends in P. falciparum burden, immunity, and disease in pregnancy. N Engl J Med 2015;373:1607–17. 10.1056/NEJMoa1406459
    1. Kitojo C, Gutman JR, Chacky F, et al. . Estimating malaria burden among pregnant women using data from antenatal care centres in Tanzania: a population-based study. Lancet Glob Health 2019;7:e1695–705. 10.1016/S2214-109X(19)30405-X
    1. van Eijk A, Hill J, Snow R. The relationship between the prevalence of malaria in pregnant women and the prevalence of malaria in children and non-pregnant women in sub-Saharan Africa. American Society of Tropical Medicine and Hygiene Meeting 2014;91:287.
    1. Willilo RA, Molteni F, Mandike R, et al. . Pregnant women and infants as sentinel populations to monitor prevalence of malaria: results of pilot study in lake zone of Tanzania. Malar J 2016;15:392. 10.1186/s12936-016-1441-0
    1. World Health Organization . World malaria report 2021. Geneva, 2021. Available:
    1. World Health Organization . Surveillance template protocol for pfhrp2/pfhrp3 gene deletions. Geneva, 2020. Available:
    1. Chidimatembue A, Svigel SS, Mayor A, et al. . Molecular surveillance for polymorphisms associated with artemisinin-based combination therapy resistance in Plasmodium falciparum isolates collected in Mozambique, 2018. Malar J 2021;20:398. 10.1186/s12936-021-03930-9
    1. Nhama A, Nhamússua L, Macete E, et al. . In vivo efficacy and safety of artemether-lumefantrine and amodiaquine-artesunate for uncomplicated Plasmodium falciparum malaria in Mozambique, 2018. Malar J 2021;20:390. 10.1186/s12936-021-03922-9
    1. Ariey F, Witkowski B, Amaratunga C, et al. . A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014;505:50–5. 10.1038/nature12876
    1. Venkatesan M, Alifrangis M, Roper C, et al. . Monitoring antifolate resistance in intermittent preventive therapy for malaria. Trends Parasitol 2013;29:497–504. 10.1016/j.pt.2013.07.008
    1. Fidock DA, Nomura T, Talley AK, et al. . Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 2000;6:861–71. 10.1016/s1097-2765(05)00077-8
    1. Tessema SK, Hathaway NJ, Teyssier NB. Sensitive, highly multiplexed sequencing of microhaplotypes from the Plasmodium falciparum heterozygome. J Infect Dis 2020.
    1. Harris PA, Taylor R, Thielke R, et al. . Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81. 10.1016/j.jbi.2008.08.010
    1. Malaria Consortium . Strengthening malaria surveillance for data-driven decision making in Mozambique, 2019. Available:
    1. World Health Organization . Master protocol for surveillance of pfhrp2/3 deletions and biobanking to support future research. Geneva: WHO, 2020. Available:
    1. Ruiz-Arenas C, Cáceres A, López-Sánchez M, et al. . scoreInvHap: inversion genotyping for genome-wide association studies. PLoS Genet 2019;15:e1008203. 10.1371/journal.pgen.1008203
    1. Eckhoff P. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg 2013;88:817–27. 10.4269/ajtmh.12-0007
    1. Amimo F, Lambert B, Magit A, et al. . Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in Africa: a systematic analysis of national trends. BMJ Glob Health 2020;5:e003217. 10.1136/bmjgh-2020-003217
    1. Somé AF, Zongo I, Compaoré Y-D, et al. . Selection of drug resistance-mediating Plasmodium falciparum genetic polymorphisms by seasonal malaria chemoprevention in Burkina Faso. Antimicrob Agents Chemother 2014;58:3660–5. 10.1128/AAC.02406-14
    1. Neafsey DE, Volkman SK. Malaria genomics in the era of eradication. Cold Spring Harb Perspect Med 2017;7. 10.1101/cshperspect.a025544. [Epub ahead of print: 01 Aug 2017].
    1. Wesolowski A, Taylor AR, Chang H-H, et al. . Mapping malaria by combining parasite genomic and epidemiologic data. BMC Med 2018;16:190. 10.1186/s12916-018-1181-9
    1. Dudas G, Carvalho LM, Bedford T, et al. . Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 2017;544:309–15. 10.1038/nature22040
    1. Lemey P, Rambaut A, Bedford T, et al. . Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog 2014;10:e1003932. 10.1371/journal.ppat.1003932
    1. Saravanan KA, Panigrahi M, Kumar H, et al. . Role of genomics in combating COVID-19 pandemic. Gene 2022;823:146387. 10.1016/j.gene.2022.146387
    1. Volkman SK, Neafsey DE, Schaffner SF, et al. . Harnessing genomics and genome biology to understand malaria biology. Nat Rev Genet 2012;13:315–28. 10.1038/nrg3187
    1. Galinsky K, Valim C, Salmier A, et al. . COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malar J 2015;14:4. 10.1186/1475-2875-14-4
    1. Kateera F, Nsobya SL, Tukwasibwe S, et al. . Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda. Malar J 2016;15:237. 10.1186/s12936-016-1287-5
    1. Mohd Abd Razak MR, Sastu UR, Norahmad NA, et al. . Genetic diversity of Plasmodium falciparum populations in malaria declining areas of Sabah, East Malaysia. PLoS One 2016;11:e0152415. 10.1371/journal.pone.0152415
    1. Nabet C, Doumbo S, Jeddi F, et al. . Genetic diversity of Plasmodium falciparum in human malaria cases in Mali. Malar J 2016;15:353. 10.1186/s12936-016-1397-0
    1. Vafa M, Troye-Blomberg M, Anchang J, et al. . Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants. Malar J 2008;7:17. 10.1186/1475-2875-7-17
    1. Chang H-H, Park DJ, Galinsky KJ, et al. . Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population. Mol Biol Evol 2012;29:3427–39. 10.1093/molbev/mss161
    1. Niang M, Thiam LG, Loucoubar C, et al. . Spatio-temporal analysis of the genetic diversity and complexity of Plasmodium falciparum infections in Kedougou, southeastern Senegal. Parasit Vectors 2017;10:33. 10.1186/s13071-017-1976-0
    1. Volkman SK, Ndiaye D, Diakite M, et al. . Application of genomics to field investigations of malaria by the International centers of excellence for malaria research. Acta Trop 2012;121:324–32. 10.1016/j.actatropica.2011.12.002
    1. Zhu SJ, Almagro-Garcia J, McVean G. Deconvolution of multiple infections in Plasmodium falciparum from high throughput sequencing data. Bioinformatics 2018;34:9–15. 10.1093/bioinformatics/btx530
    1. Cerqueira GC, Cheeseman IH, Schaffner SF, et al. . Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 2017;18:78. 10.1186/s13059-017-1204-4
    1. Baetscher DS, Clemento AJ, Ng TC, et al. . Microhaplotypes provide increased power from short-read DNA sequences for relationship inference. Mol Ecol Resour 2018;18:296–305. 10.1111/1755-0998.12737
    1. Kidd KK, Pakstis AJ, Speed WC, et al. . Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci Int Genet 2014;12:215–24. 10.1016/j.fsigen.2014.06.014
    1. Bennett L, Oldoni F, Long K, et al. . Mixture deconvolution by massively parallel sequencing of microhaplotypes. Int J Legal Med 2019;133:719–29. 10.1007/s00414-019-02010-7
    1. Kidd KK, Speed WC. Criteria for selecting microhaplotypes: mixture detection and deconvolution. Investig Genet 2015;6:1. 10.1186/s13323-014-0018-3
    1. Henden L, Lee S, Mueller I, et al. . Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens. PLoS Genet 2018;14:e1007279. 10.1371/journal.pgen.1007279
    1. Lawson DJ, Hellenthal G, Myers S, et al. . Inference of population structure using dense haplotype data. PLoS Genet 2012;8:e1002453. 10.1371/journal.pgen.1002453
    1. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet 2015;16:321–32. 10.1038/nrg3920
    1. Moonasar D, Maharaj R, Kunene S, et al. . Towards malaria elimination in the MOSASWA (Mozambique, South Africa and Swaziland) region. Malar J 2016;15:419. 10.1186/s12936-016-1470-8
    1. Lover AA, Harvard KE, Lindawson AE, et al. . Regional initiatives for malaria elimination: building and maintaining partnerships. PLoS Med 2017;14:e1002401. 10.1371/journal.pmed.1002401
    1. de Vries J, Munung SN, Matimba A, et al. . Regulation of genomic and biobanking research in Africa: a content analysis of ethics guidelines, policies and procedures from 22 African countries. BMC Med Ethics 2017;18:8. 10.1186/s12910-016-0165-6

Source: PubMed

3
Abonnere