Should knee extension strength testing be implemented as a screening test for identifying probable and confirmed sarcopenia in older T2DM patients?

Ofer Kis, Assaf Buch, Roy Eldor, Amir Rubin, Ayelet Dunsky, Naftali Stern, Daniel S Moran, Ofer Kis, Assaf Buch, Roy Eldor, Amir Rubin, Ayelet Dunsky, Naftali Stern, Daniel S Moran

Abstract

Background: The accelerated loss of muscle strength and mass observed in older type 2 diabetes mellitus (T2DM) patients due to the combined effects of diabetes and obesity, greatly increases their risk for sarcopenia. Early detection and treatment of probable and confirmed sarcopenia is paramount to delay mobility disability. Using low handgrip strength cut-off points for the initial identification of sarcopenia according to the new European Working Group on Sarcopenia in Older People (EWGSOP2) guidelines may mask the presence of sarcopenia. Relative knee extension strength cut-off points using a simple hand-held dynamometer can assist clinicians in the diagnosis of probable and confirmed sarcopenia by possibly reducing false negative results.

Methods: A cohort of one hundred T2DM older patients (60% women) (mean age 74.5 years) mostly obese community dwelling older adults were evaluated for body composition by Bioelectrical impedance analysis (BIA), yielding appendicular skeletal mass index (ASMI) results. Patients underwent handgrip strength (HGS) and knee extension strength (KES) tests as well as functional ability tests. Prevalence of probable and confirmed sarcopenia using HGS and KES cut-off points were calculated. Pearson correlations were performed to evaluate the relationship between ASMI and limbs strength. A regression analysis was conducted to examine which variables best predict ASMI values. A multivariate analysis of covariance was performed to assess the effect of independent variables on KES and HGS.

Results: Using cutoff points for low KES identified 24 patients with probable sarcopenia and two with confirmed sarcopenia. Conversely, using the EWGSOP2 cut off points for low HGS, identified only one patient with probable sarcopenia and none of the patients with confirmed sarcopenia.

Conclusion: KES cut-off points using a simple hand-held dynamometer can assist in the identification of probable and confirmed sarcopenia using EWGSOP2 cut off points for low muscle mass in a population of older T2DM patients for further analysis and early treatment. This is notably true in patients possessing high body mass index (BMI) alongside normal ASMI and HGS, potentially reducing false positive sarcopenia screening results.

Trial registration: ClinicalTrials.gov PRS: NCT03560375 . Last registration date (last update): 06/06/2018. The trial was a-priori registered before actual recruitment of subjects.

Keywords: Appendicular skeletal mass index; Handgrip strength; Knee extension strength; Older adults; Sarcopenia; Type 2 diabetes.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Prevalence of different sarcopenia levels according to EWGSOP1 and EWGSOP2 using low hand grip strength or low knee extension strength
Fig. 2
Fig. 2
Figure 1A-B: a scatterplot representation of individual knee extension scores and their correlations to ASMI in: a) men; b) women. Figure 1C-D: a scatterplot representation of individual handgrip scores and their correlations to ASMI in: a) men; b) women

References

    1. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020.
    1. Key global findings 2021. The IDF Diabetes Atlas 10th Edition. ©2021 International Diabetes Federation. .
    1. Umegaki H. Sarcopenia and frailty in older patients with diabetes mellitus. Geriatr Gerontol Int. 2016;16(3):293–299. doi: 10.1111/ggi.12688.
    1. Kalyani RR, Tra Y, Yeh H-C, Egan JM, Ferrucci L, Brancati FL. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes: results from the National Health and nutrition examination survey (NHANES), 1999–2002. J Am Geriatr Soc. 2013;61(5):769–775. doi: 10.1111/jgs.12204.
    1. Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, van Kranenburg J, Nilwik R, van Loon LJC. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–592. doi: 10.1016/j.jamda.2013.02.006.
    1. Wong E, Backholer K, Gearon E, Harding J, Freak-Poli R, Stevenson C, Peeters A. Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013;1(2):106–114. doi: 10.1016/S2213-8587(13)70046-9.
    1. Calvani R, Rodriguez-Mañas L, Picca A, Marini F, Biancolillo A, Laosa O, Pedraza L, Gervasoni J, Primiano A, Miccheli A, Bourdel-Marchasson I, Regueme SC, Bernabei R, Marzetti E, Sinclair AJ, Gambassi G, European MID-Frail Consortium The “metabolic biomarkers of frailty in older people with type 2 diabetes mellitus” (MetaboFrail) study: rationale, design and methods. Exp Gerontol. 2020;129:110782. doi: 10.1016/j.exger.2019.110782.
    1. Corriere M, Rooparinesingh N, Kalyani RR. Epidemiology of Diabetes and Diabetes Complications in the Elderly: An Emerging Public Health Burden. Curr Diabetes Rep. 2013;13:805–813. doi: 10.1007/s11892-013-0425-5.
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034.
    1. Cui M, Gang X, Wang G, Xiao X, Li Z, Jiang Z, Wang G. A cross-sectional study: Associations between sarcopenia and clinical characteristics of patients with type 2 diabetes. Medicine (Baltimore). 2020;99(2):e18708.
    1. Mesinovic J, McMillan LB, Shore-Lorenti C, De Courten B, Ebeling PR, Scott D. Metabolic Syndrome and Its Associations with Components of Sarcopenia in Overweight and Obese Older Adults. J Clin Med. 2019;8(2):145.
    1. Murata Y, Kadoya Y, Yamada S, Sanke T. Sarcopenia in elderly patients with type 2 diabetes mellitus: prevalence and related clinical factors. Diabetol Int. 2017;9(2):136–142. doi: 10.1007/s13340-017-0339-6.
    1. Sinclair AJ, Abdelhafiz AH, Rodríguez-Mañas L. Frailty and sarcopenia - newly emerging and high impact complications of diabetes. J Diabetes Complicat. 2017;31(9):1465–1473. doi: 10.1016/j.jdiacomp.2017.05.003.
    1. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1):183.
    1. Mayhew AJ, Amog K, Phillips S, Parise G, McNicholas PD, de Souza RJ, et al. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing. 2019;48(1):48–56. doi: 10.1093/ageing/afy106.
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Bautmans I, Baeyens JP, Cesari M, Cherubini A, Kanis J, Maggio M, Martin F, Michel JP, Pitkala K, Reginster JY, Rizzoli R, Sánchez-Rodríguez D, Schols J. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169.
    1. Samuel D, Rowe P, Hood V, Nicol A. The relationships between muscle strength, biomechanical functional moments and health-related quality of life in non-elite older adults. Age Ageing. 2012;41(2):224–230. doi: 10.1093/ageing/afr156.
    1. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Cho YW, Newman AB, for the Health, Aging, and Body Composition Study Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care Am Diabetes Assoc. 2007;30(6):1507–1512. doi: 10.2337/dc06-2537.
    1. Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53(6):1543–1548. doi: 10.2337/diabetes.53.6.1543.
    1. Yeung SSY, Reijnierse EM, Trappenburg MC, Hogrel J-Y, McPhee JS, Piasecki M, et al. Handgrip strength cannot be assumed a proxy for overall muscle strength. J Am Med Dir Assoc. 2018;19(8):703–709. doi: 10.1016/j.jamda.2018.04.019.
    1. IJzerman TH, Schaper NC, Melai T, Meijer K, Willems PJB, Savelberg HHCM. Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Res Clin Pract. 2012;95(3):345–351. doi: 10.1016/j.diabres.2011.10.026.
    1. Buckinx F, Croisier J-L, Charles A, Petermans J, Reginster J-Y, Rygaert X, Bruyere O. Normative data for isometric strength of 8 different muscle groups and their usefulness as a predictor of loss of autonomy among physically active nursing home residents: the SENIOR cohort. J Musculoskelet Neuronal Interact. 2019;19(3):258–265.
    1. Muff G, Dufour S, Meyer A, Severac F, Favret F, Geny B, Lecocq J, Isner-Horobeti ME. Comparative assessment of knee extensor and flexor muscle strength measured using a hand-held vs. isokinetic dynamometer. J Phys Ther Sci. 2016;28(9):2445–2451. doi: 10.1589/jpts.28.2445.
    1. Mentiplay BF, Perraton LG, Bower KJ, Adair B, Pua Y-H, Williams GP, McGaw R, Clark RA. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: a reliability and validity study. PLoS One. 2015;10(10):e0140822. doi: 10.1371/journal.pone.0140822.
    1. Chamorro C, Armijo-Olivo S, De la Fuente C, Fuentes J, Javier CL. Absolute reliability and concurrent validity of hand held dynamometry and isokinetic dynamometry in the hip, knee and ankle joint: systematic review and meta-analysis. Open Med (Wars) 2017;12(1):359–375. doi: 10.1515/med-2017-0052.
    1. Buckinx F, Croisier J-L, Reginster J-Y, Dardenne N, Beaudart C, Slomian J, Leonard S, Bruyère O. Reliability of muscle strength measures obtained with a hand-held dynamometer in an elderly population. Clin Physiol Funct Imaging. 2017;37(3):332–340. doi: 10.1111/cpf.12300.
    1. Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183–187. doi: 10.1007/s13340-019-00400-1.
    1. Choquette S, Bouchard DR, Doyon CY, Sénéchal M, Brochu M, Dionne IJ. Relative strength as a determinant of mobility in elders 67–84 years of age. A nuage study: nutrition as a determinant of successful aging. J Nutr Health Aging. 2010;14(3):190–195. doi: 10.1007/s12603-010-0047-4.
    1. Wearing J, Konings P, de Bie RA, Stokes M, de Bruin ED. Prevalence of probable sarcopenia in community-dwelling older Swiss people - a cross-sectional study. BMC Geriatr. 2020;20(1):307. doi: 10.1186/s12877-020-01718-1.
    1. Buch A, Eldor R, Kis O, Keinan-Boker L, Dunsky A, Rubin A, Lopez A, Sofer Y, Osher E, Marcus Y, Stern N. The effect of circuit resistance training, empagliflozin or “vegeterranean diet” on physical and metabolic function in older subjects with type 2 diabetes: a study protocol for a randomized control trial (CEV-65 trial) BMC Geriatr. 2019;19(1):228. doi: 10.1186/s12877-019-1219-7.
    1. Ling CHY, de Craen AJM, Slagboom PE, Gunn DA, Stokkel MPM, Westendorp RGJ, Maier AB. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30(5):610–615. doi: 10.1016/j.clnu.2011.04.001.
    1. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA. Frailty in older adults evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–M157. doi: 10.1093/gerona/56.3.M146.
    1. Bohannon RW, Wikholm JB. Measurements of knee extension force obtained by two examiners of substantially different experience with a hand-held dynamometer. Isokinet Exerc Sci IOS Press. 1992;2(1):5–8. doi: 10.3233/IES-1992-2101.
    1. Martien S, Delecluse C, Boen F, Seghers J, Pelssers J, Van Hoecke A-S, et al. Is knee extension strength a better predictor of functional performance than handgrip strength among older adults in three different settings. Arch Gerontol Geriatr. 2015;60(2):252–258. doi: 10.1016/j.archger.2014.11.010.
    1. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002;26(12):1596–609. doi: 10.1038/sj.ijo.0802167.
    1. Domholdt E. Physical therapy research: principles and applications. 2. Philadelophia: WB Saunders Co.; 2000.
    1. Villani A, McClure R, Barrett M, Scott D. Diagnostic differences and agreement between the original and revised European working group (EWGSOP) consensus definition for sarcopenia in community-dwelling older adults with type 2 diabetes mellitus. Arch Gerontol Geriatr. 2020;89:104081. doi: 10.1016/j.archger.2020.104081.
    1. de Freitas MM, de Oliveira VLP, Grassi T, Valduga K, Miller MEP, Schuchmann RA, Souza KLA, de Azevedo MJ, Viana LV, de Paula TP. Difference in sarcopenia prevalence and associated factors according to 2010 and 2018 European consensus (EWGSOP) in elderly patients with type 2 diabetes mellitus. Exp Gerontol. 2020;132:110835. doi: 10.1016/j.exger.2020.110835.
    1. Anagnostis P, Gkekas NK, Achilla C, Pananastasiou G, Taouxidou P, Mitsiou M, Kenanidis E, Potoupnis M, Tsiridis E, Goulis DG. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and Meta-analysis. Calcif Tissue Int. 2020;107(5):453–463. doi: 10.1007/s00223-020-00742-y.
    1. Chen F, Xu S, Wang Y, Chen F, Cao L, Liu T, Huang T, Wei Q, Ma G, Zhao Y, Wang D. Risk factors for sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin. J Diabetes Res. 2020;2020:3950404–3950410. doi: 10.1155/2020/3950404.
    1. Wang T, Feng X, Zhou J, Gong H, Xia S, Wei Q, Hu X, Tao R, Li L, Qian F, Yu L. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep. 2016;6:38937.
    1. Reiss J, Iglseder B, Alzner R, Mayr-Pirker B, Pirich C, Kässmann H, Kreutzer M, Dovjak P, Reiter R. Consequences of applying the new EWGSOP2 guideline instead of the former EWGSOP guideline for sarcopenia case finding in older patients. Age Ageing. 2019;48(5):719–724. doi: 10.1093/ageing/afz035.
    1. Petermann-Rocha F, Chen M, Gray SR, Ho FK, Pell JP, Celis-Morales C. New versus old guidelines for sarcopenia classification: what is the impact on prevalence and health outcomes. Age Ageing. 2020;49(2):300–304. doi: 10.1093/ageing/afz126.
    1. Locquet M, Beaudart C, Petermans J, Reginster J-Y, Bruyère O. EWGSOP2 versus EWGSOP1: impact on the prevalence of sarcopenia and its major health consequences. J Am Med Dir Assoc. 2019;20(3):384–385. doi: 10.1016/j.jamda.2018.11.027.
    1. Costanzo L, De Vincentis A, Di Iorio A, Bandinelli S, Ferrucci L, Antonelli Incalzi R, et al. Impact of low muscle mass and low muscle strength according to EWGSOP2 and EWGSOP1 in community-dwelling older people. J Gerontol A Biol Sci Med Sci. 2020;75(7):1324–1330. doi: 10.1093/gerona/glaa063.
    1. Harris-Love MO, Benson K, Leasure E, Adams B, McIntosh V. The influence of upper and lower extremity strength on performance-based sarcopenia assessment tests. J Funct Morphol Kinesiol. 2018;3(4). 10.3390/jfmk3040053.
    1. Yee XS, Ng YS, Allen JC, Latib A, Tay EL, Abu Bakar HM, Ho CYJ, Koh WCC, Kwek HHT, Tay L. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur Rev Aging Phys Act. 2021;18(1):1. doi: 10.1186/s11556-020-00255-5.
    1. Johansson J, Strand BH, Morseth B, Hopstock LA, Grimsgaard S. Differences in sarcopenia prevalence between upper-body and lower-body based EWGSOP2 muscle strength criteria: the Tromsø study 2015-2016. BMC Geriatr. 2020;20(1):461. doi: 10.1186/s12877-020-01860-w.
    1. Yokoyama H, Shiraiwa T, Takahara M, Iwamoto M, Kuribayashi N, Nomura T, Yamada M, Sone H, Araki SI. Applications of physical performance measures to routine diabetes care for frailty prevention concept: fundamental data with grip strength, gait speed, timed chair stand speed, standing balance, and knee extension strength. BMJ Open Diabetes Res Care. 2020;8(1):e001562. doi: 10.1136/bmjdrc-2020-001562.
    1. Riandini T, Wee HL, Khoo EYH, Tai BC, Wang W, Koh GCH, Tai ES, Tavintharan S, Chandran K, Hwang SW, Venkataraman K. Functional status mediates the association between peripheral neuropathy and health-related quality of life in individuals with diabetes. Acta Diabetol. 2018;55(2):155–164. doi: 10.1007/s00592-017-1077-8.
    1. Koblbauer IFH, Lambrecht Y, van der Hulst MLM, Neeter C, Engelbert RHH, Poolman RW, Scholtes VA. Reliability of maximal isometric knee strength testing with modified hand-held dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study. BMC Musculoskelet Disord. 2011;12(1):249. doi: 10.1186/1471-2474-12-249.
    1. Verlaan L, Boekesteijn RJ, Oomen PW, Liu W-Y, Peters MJM, Witlox MA, Emans PJ, van Rhijn LW, Meijer K. Biomechanical alterations during sit-to-stand transfer are caused by a synergy between knee osteoarthritis and obesity. Biomed Res Int. 2018;2018:3519498–3519497. doi: 10.1155/2018/3519498.
    1. Kim M, Won CW. Prevalence of sarcopenia in community-dwelling older adults using the definition of the European working group on sarcopenia in older people 2: findings from the Korean frailty and aging cohort study. Age Ageing. 2019;48(6):910–916. doi: 10.1093/ageing/afz091.
    1. Dodds RM, Murray JC, Robinson SM, Sayer AA. The identification of probable sarcopenia in early old age based on the SARC-F tool and clinical suspicion: findings from the 1946 British birth cohort. Eur Geriatr Med. 2020;11(3):433–441. doi: 10.1007/s41999-020-00310-5.
    1. Gruberg L, Weissman NJ, Waksman R, Fuchs S, Deible R, Pinnow EE, Ahmed LM, Kent KM, Pichard AD, Suddath WO, Satler LF, Lindsay J., Jr The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? J Am Coll Cardiol. 2002;39(4):578–584. doi: 10.1016/S0735-1097(01)01802-2.
    1. Smeuninx B, Mckendry J, Wilson D, Martin U, Breen L. Age-related anabolic resistance of Myofibrillar protein synthesis is exacerbated in obese inactive individuals. J Clin Endocrinol Metab. 2017;102(9):3535–3545. doi: 10.1210/jc.2017-00869.
    1. Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambélé-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016;17(3):467–483. doi: 10.1007/s10522-015-9626-4.
    1. Morgan PT, Smeuninx B, Breen L. Exploring the impact of obesity on skeletal muscle function in older age. Front Nutr. 2020;7:569904. doi: 10.3389/fnut.2020.569904.
    1. Koushyar H, Nussbaum MA, Davy KP, Madigan ML. Relative strength at the hip, knee, and ankle is lower among younger and older females who are obese. J Geriatr Phys Ther. 2017;40(3):143–149. doi: 10.1519/JPT.0000000000000086.
    1. Lee W-J, Peng L-N, Chiou S-T, Chen L-K. Relative handgrip strength is a simple Indicator of Cardiometabolic risk among middle-aged and older people: a nationwide population-based study in Taiwan. PLoS One. 2016;11(8):e0160876. doi: 10.1371/journal.pone.0160876.
    1. Lombardo M, Padua E, Campoli F, Panzarino M, Mîndrescu V, Annino G, Iellamo F, Bellia A. Relative handgrip strength is inversely associated with the presence of type 2 diabetes in overweight elderly women with varying nutritional status. Acta Diabetol. 2021;58(1):25–32. doi: 10.1007/s00592-020-01588-4.
    1. Chen C-N, Chen T-C, Tsai S-C, Hwu C-M. Factors associated with relative muscle strength in patients with type 2 diabetes mellitus. Arch Gerontol Geriatr. 2021;95:104384. doi: 10.1016/j.archger.2021.104384.
    1. Donini LM, Pinto A, Giusti AM, Lenzi A, Poggiogalle E. Obesity or BMI paradox? Beneath the tip of the iceberg. Front Nutr. 2020;7:53. doi: 10.3389/fnut.2020.00053.
    1. Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS, Moore LM, Rajpathak S. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32(7):1243–1252. doi: 10.1185/03007995.2016.1168291.

Source: PubMed

3
Abonnere