Association of a Network of Immunologic Response and Clinical Features With the Functional Recovery From Crotalinae Snakebite Envenoming

Charles J Gerardo, Elizabeth Silvius, Seth Schobel, John C Eppensteiner, Lauren M McGowan, Eric A Elster, Allan D Kirk, Alexander T Limkakeng, Charles J Gerardo, Elizabeth Silvius, Seth Schobel, John C Eppensteiner, Lauren M McGowan, Eric A Elster, Allan D Kirk, Alexander T Limkakeng

Abstract

Background: The immunologic pathways activated during snakebite envenoming (SBE) are poorly described, and their association with recovery is unclear. The immunologic response in SBE could inform a prognostic model to predict recovery. The purpose of this study was to develop pre- and post-antivenom prognostic models comprised of clinical features and immunologic cytokine data that are associated with recovery from SBE.

Materials and methods: We performed a prospective cohort study in an academic medical center emergency department. We enrolled consecutive patients with Crotalinae SBE and obtained serum samples based on previously described criteria for the Surgical Critical Care Initiative (SC2i)(ClinicalTrials.gov Identifier: NCT02182180). We assessed a standard set of clinical variables and measured 35 unique cytokines using Luminex Cytokine 35-Plex Human Panel pre- and post-antivenom administration. The Patient-Specific Functional Scale (PSFS), a well-validated patient-reported outcome of functional recovery, was assessed at 0, 7, 14, 21 and 28 days and the area under the patient curve (PSFS AUPC) determined. We performed Bayesian Belief Network (BBN) modeling to represent relationships with a diagram composed of nodes and arcs. Each node represents a cytokine or clinical feature and each arc represents a joint-probability distribution (JPD).

Results: Twenty-eight SBE patients were enrolled. Preliminary results from 24 patients with clinical data, 9 patients with pre-antivenom and 11 patients with post-antivenom cytokine data are presented. The group was mostly female (82%) with a mean age of 38.1 (SD ± 9.8) years. In the pre-antivenom model, the variables most closely associated with the PSFS AUPC are predominantly clinical features. In the post-antivenom model, cytokines are more fully incorporated into the model. The variables most closely associated with the PSFS AUPC are age, antihistamines, white blood cell count (WBC), HGF, CCL5 and VEGF. The most influential variables are age, antihistamines and EGF. Both the pre- and post-antivenom models perform well with AUCs of 0.87 and 0.90 respectively.

Discussion: Pre- and post-antivenom networks of cytokines and clinical features were associated with functional recovery measured by the PSFS AUPC over 28 days. With additional data, we can identify prognostic models using immunologic and clinical variables to predict recovery from SBE.

Keywords: Patient Specific Functional Scale; antivenin; chemokine; cytokine; predictive modeling; prognostic model; snake bite.

Conflict of interest statement

ES was employed by DecisionQ. CG receives grant funding from BTG Specialty Pharmaceuticals. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Gerardo, Silvius, Schobel, Eppensteiner, McGowan, Elster, Kirk and Limkakeng.

Figures

Figure 1
Figure 1
The range of the Patient-Specific Functional Scale Area Under the Patient Curves at 28 days for 24 patients with available preliminary data. (examples lowest, median, highest). PSFS AUPC, Patient-Specific Functional Scale Area Under the Patient Curve.
Figure 2
Figure 2
Individual cytokine and chemokine values pre- and post-antivenom treatment. EGF: endothelial growth factor, EOTAXIN: eosinophil chemotactic proteins, *FGFBASIC: fibroblastic growth factor, basic, GCSF: granulocyte colony stimulating factor, GMCSF: ganulocyte-macrophage colony stimulating factor, *HGF: hepatocyte growth factor, IFNA: interferon alpha, IFNG: interferon gamma, IL01interleukin 1a, IL01b: interleukin 1b, IL01Ra: Interleukin 1 receptor antagonist, IL02: interleukin 2,* IL02R: interleukin 2 receptor, IL03: interleukin 3, IL04: interleukin 4, IL05: interleukin 5, IL06: interleukin 6, IL08: interleukin 8, IL09: interleukin 9, IL10: interleukin 10, IL12: interleukin 12, IL13: interleukin 13, IL15: interleukin 15, IL17A: interleukin 17A, IL17F: interleukin 17F, IL22: interleukin 22, CXCL10: C-X-C motif ligand 10, CCL2: C-C motif ligand 2, CXCL9: C-X-C motif ligand 9, CCL3: C-C motif ligand 3, CCL4: C-C motif ligand 4, *CCL5: C-C motif ligand 5, VEGF: vascular endothelial growth factor. *Difference in populations based on box plots.
Figure 3
Figure 3
Pre-antivenom cytokines and chemokines values of patients with good and poor recovery. EGF: endothelial growth factor, *EOTAXIN: eosinophil chemotactic proteins, *HGF: hepatocyte growth factor, IFNA: interferon alpha, IL01a: interleukin 1a, IL01Ra: Interleukin 1 receptor antagonist, IL08: interleukin 8, *IL10: interleukin 10, *IL12: interleukin 12, IL13: interleukin 13, *CXCL10: C-X-C motif ligand 10, *CCL2: C-C motif ligand 2, *CCL4: C-C motif ligand 4, *CCL5: C-C motif ligand 5, *VEGF: vascular endothelial growth factor. *Difference in populations based on box plots.
Figure 4
Figure 4
Post-antivenom cytokine and chemokine values of patients with good and poor recovery. *EGF: endothelial growth factor, EOTAXIN: eosinophil chemotactic proteins, *HGF: hepatocyte growth factor, IFNA: interferon alpha, *IL01RA: Interleukin 1 receptor antagonist, IL10: interleukin 10, *IL12: interleukin 12, IL13: interleukin 13, *CXCL10: C-X-C motif ligand 10, *CCL2: C-C motif ligand 2, *CCL4: C-C motif ligand 4, CCL5: C-C motif ligand 5, VEGF: vascular endothelial growth factor. *Difference in populations based on box plots.
Figure 5
Figure 5
Pre-antivenom prognostic model predictive of recovery. PSFS AUPC: Patient-Specific Functional Scale Area Under the Patient Curve, CCL4: C-C motif ligand 4, GI: gastro-intestinal, CO2: carbon dioxide, Resp Rate: respiratory rate.
Figure 6
Figure 6
Post-antivenom prognostic model predictive of recovery. PSFS AUPC: Patient-Specific Functional Scale Area Under the Patient Curve, CCL4: C-C motif ligand 4, CCL5: C-C motif ligand 5, ECG: endothelial growth factor, HGF: hepatocyte growth factor, VEGF: vascular endothelial growth factor, WBC: white blood cell count.

References

    1. Minghui R, Malecela MN, Cooke E, Abela-Ridder B. WHO’s Snakebite Envenoming Strategy for prevention and control. Lancet Glob Health (2019) 7(7):e837–8. 10.1016/S2214-109X(19)30225-6
    1. Brenes-Chacón H, Gutiérrez JM, Camacho-Badilla K, Soriano-Fallas A, Ulloa-Gutierrez R, Valverde-Muñoz K, et al. . Snakebite envenoming in children: A neglected tropical disease in a Costa Rican pediatric tertiary care center. Acta Trop (2019) 200:105176. 10.1016/j.actatropica.2019.105176
    1. Pach S, Le Geyt J, Gutiérrez JM, Williams D, Maduwage KP, Habib AG, et al. et al. . Paediatric snakebite envenoming: the world’s most neglected “Neglected Tropical Disease”? Arch Dis Child (2020). 10.1136/archdischild-2020-319417
    1. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. . The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PloS Med (2008) 5(11):e218. 10.1371/journal.pmed.0050218
    1. Williams DJ, Faiz MA, Abela-Ridder B, Ainsworth S, Bulfone TC, Nickerson AD, et al. . Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl Trop Dis (2019) 13(2):e0007059. 10.1371/journal.pntd.0007059
    1. Chippaux JP. Snake-bites: appraisal of the global situation. Bull World Health Organ (1998) 76(5):515–24.
    1. Lavonas EJ, Ruha A-M, Banner W, Bebarta V, Bernstein JN, Bush SP, et al. . Unified treatment algorithm for the management of crotaline snakebite in the United States: results of an evidence-informed consensus workshop. BMC Emerg Med (2011) 11:2. 10.1186/1471-227X-11-2
    1. Harrison RA, Gutiérrez JM. Priority actions and progress to substantially and sustainably reduce the mortality, morbidity and socioeconomic burden of tropical snakebite. Toxins (Basel) (2016) 8(12). 10.3390/toxins8120351
    1. Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbos JE, et al. . History of envenoming therapy and current perspectives. Front Immunol (2019) 10:1598. 10.3389/fimmu.2019.01598
    1. Dart RC, Seifert SA, Boyer LV, Clark RF, Hall E, McKinney P, et al. . A randomized multicenter trial of crotalinae polyvalent immune Fab (ovine) antivenom for the treatment for crotaline snakebite in the United States. Arch Intern Med (2001) 161(16):2030–6. 10.1001/archinte.161.16.2030
    1. Bush SP, Ruha A-M, Seifert SA, Morgan DL, Lewis BJ, Arnold TC, et al. . Comparison of F(ab’)2 versus Fab antivenom for pit viper envenomation: a prospective, blinded, multicenter, randomized clinical trial. Clin Toxicol (2015) 53(1):37–45. 10.3109/15563650.2014.974263
    1. Gerardo CJ, Quackenbush E, Lewis B, Rose SR, Greene S, Toschlog EA, et al. . The Efficacy of Crotalidae Polyvalent Immune Fab (Ovine) Antivenom Versus Placebo Plus Optional Rescue Therapy on Recovery From Copperhead Snake Envenomation: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Ann Emerg Med (2017) 70(2):233–44.e3. 10.1016/j.annemergmed.2017.04.034
    1. Dart RC, Seifert SA, Carroll L, Clark RF, Hall E, Boyer-Hassen LV, et al. . Affinity-purified, mixed monospecific crotalid antivenom ovine Fab for the treatment of crotalid venom poisoning. Ann Emerg Med (1997) 30(1):33–9. 10.1016/s0196-0644(97)70107-0
    1. Mullins ME, Gerardo CJ, Bush SP, Rose SR, Greene S, Quackenbush EB, et al. . Adverse Events in the Efficacy of Crotalidae Polyvalent Immune Fab Antivenom vs Placebo in Recovery from Copperhead Snakebite Trial. South Med J (2018) 111(12):716–20. 10.14423/SMJ.0000000000000902
    1. Kravitz J, Gerardo CJ. Copperhead snakebite treated with crotalidae polyvalent immune fab (ovine) antivenom in third trimester pregnancy. Clin Toxicol (2006) 44(3):353–4. 10.1080/15563650600584725
    1. Clark RF, McKinney PE, Chase PB, Walter FG. Immediate and delayed allergic reactions to Crotalidae polyvalent immune Fab (ovine) antivenom. Ann Emerg Med (2002) 39(6):671–6. 10.1067/mem.2002.123134
    1. de Silva HA, Pathmeswaran A, Ranasinha CD, Jayamanne S, Samarakoon SB, Hittharage A, et al. . Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: a randomised, double-blind, placebo-controlled trial. PLoS Med (2011) 8(5):e1000435. 10.1371/journal.pmed.1000435
    1. Lalloo DG, Theakston RDG. Snake antivenoms. J Toxicol Clin Toxicol (2003) 41(3):277–90. 10.1081/clt-120021113. 317.
    1. Williams DJ, Jensen SD, Nimorakiotakis B, Müller R, Winkel KD. Antivenom use, premedication and early adverse reactions in the management of snake bites in rural Papua New Guinea. Toxicon (2007) 49(6):780–92. 10.1016/j.toxicon.2006.11.026
    1. Williams DJ, Habib AG, Warrell DA. Clinical studies of the effectiveness and safety of antivenoms. Toxicon (2018) 150:1–10. 10.1016/j.toxicon.2018.05.001
    1. Hasan SMK, Basher A, Molla AA, Sultana NK, Faiz MA. The impact of snake bite on household economy in Bangladesh. Trop Doct (2012) 42(1):41–3. 10.1258/td.2011.110137
    1. Hamza M, Idris MA, Maiyaki MB, Lamorde M, Chippaux J-P, Warrell DA, et al. . Cost-Effectiveness of Antivenoms for Snakebite Envenoming in 16 Countries in West Africa. PloS Negl Trop Dis (2016) 10(3):e0004568. 10.1371/journal.pntd.0004568
    1. Quintana-Castillo JC, Estrada-Gómez S, Cardona-Arias JA. Economic evaluations of interventions for snakebites: A systematic review. Clinicoecon Outcomes Res (2020) 12:547–54. 10.2147/CEOR.S259426
    1. Lavonas EJ, Anderson VE, Gerardo CJ. In reply to Dr. Shah and Dr. Beuhler. Clin Toxicol (2020) 58(3):223–4. 10.1080/15563650.2019.1641607
    1. Shah KR, Beuhler MC. Comment on Early administration of fab antivenom resulted in faster limb recovery in copperhead snake envenomation patients. Clin Toxicol (2020) 58(3):222–3. 10.1080/15563650.2019.1620263
    1. Habib AG, Brown NI. The snakebite problem and antivenom crisis from a health-economic perspective. Toxicon (2018) 150:115–23. 10.1016/j.toxicon.2018.05.009
    1. Harrison RA, Oluoch GO, Ainsworth S, Alsolaiss J, Bolton F, Arias A-S, et al. . Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa. PLoS Negl Trop Dis (2017) 11(10):e0005969. 10.1371/journal.pntd.0005969
    1. Habib AG, Musa BM, Iliyasu G, Hamza M, Kuznik A, Chippaux J-P. Challenges and prospects of snake antivenom supply in sub-Saharan Africa. PLoS Negl Trop Dis (2020) 14(8):e0008374. 10.1371/journal.pntd.0008374
    1. Chippaux JP, Kambewasso A. [Snake bites and antivenom availability in the urban community of Niamey, Niger]. Bull Soc Pathol Exot (2002) 95(3):181–3.
    1. Borek HA, Rizer J, Ngo A. Fab antivenom controversy continues. Ann Emerg Med (2017) 70(6):928–9. 10.1016/j.annemergmed.2017.08.002
    1. Gerardo CJ, Lavonas EJ. In reply. Ann Emerg Med (2017) 70(6):929–30. 10.1016/j.annemergmed.2017.08.003
    1. Anderson VE, Gerardo CJ, Rapp-Olsson M, Bush SP, Mullins ME, Greene S, et al. . Early administration of Fab antivenom resulted in faster limb recovery in copperhead snake envenomation patients. Clin Toxicol (2019) 57(1):25–30. 10.1080/15563650.2018.1491982
    1. Bucaretchi F, Herrera SRF, Hyslop S, Baracat ECE, Vieira RJ. Snakebites by Crotalus durissus ssp in children in Campinas, São Paulo, Brazil. Rev Inst Med Trop Sao Paulo (2002) 44(3):133–8. 10.1590/s0036-46652002000300004
    1. Bucaretchi F, Herrera SR, Hyslop S, Baracat EC, Vieira RJ. Snakebites by Bothrops spp in children in Campinas, São Paulo, Brazil. Rev Inst Med Trop Sao Paulo (2001) 43(6):329–33. 10.1590/s0036-46652001000600006
    1. Otero R, Gutiérrez J, Beatriz Mesa M, Duque E, Rodríguez O, Luis Arango J, et al. . Complications of Bothrops, Porthidium, and Bothriechis snakebites in Colombia. A clinical and epidemiological study of 39 cases attended in a university hospital. Toxicon (2002) 40(8):1107–14. 10.1016/s0041-0101(02)00104-6
    1. Pinho FMO, Zanetta DMT, Burdmann EA. Acute renal failure after Crotalus durissus snakebite: a prospective survey on 100 patients. Kidney Int (2005) 67(2):659–67. 10.1111/j.1523-1755.2005.67122.x
    1. Nicoleti AF, de Medeiros CR, Duarte MR, França FO de S. Comparison of Bothropoides jararaca bites with and without envenoming treated at the Vital Brazil Hospital of the Butantan Institute, State of São Paulo, Brazil. Rev Soc Bras Med Trop (2010) 43(6):657–61. 10.1590/s0037-86822010000600011
    1. Ribeiro LA, Jorge MT, Lebrão ML. Prognostic factors for local necrosis in Bothrops jararaca (Brazilian pit viper) bites. Trans R Soc Trop Med Hyg (2001) 95(6):630–4. 10.1016/s0035-9203(01)90101-4
    1. Gerardo CJ, Vissoci JRN, Brown MWJ, Bush SP. Coagulation parameters in copperhead compared to other Crotalinae envenomation: secondary analysis of the F(ab’)2 versus Fab antivenom trial. Clin Toxicol (2017) 55(2):109–14. 10.1080/15563650.2016.1250275
    1. Gerardo CJ, Vissoci JRN, Evans CS, Simel DL, Lavonas EJ. Does this patient have a severe snake envenomation?: the rational clinical examination systematic review. JAMA Surg (2019) 154(4):346–54. 10.1001/jamasurg.2018.5069
    1. Kanaan NC, Ray J, Stewart M, Russell KW, Fuller M, Bush SP, et al. . Wilderness medical society practice guidelines for the treatment of pitviper envenomations in the united states and canada. Wilderness Environ Med (2015) 26(4):472–87. 10.1016/j.wem.2015.05.007
    1. Gold BS, Dart RC, Barish RA. Bites of venomous snakes. N Engl J Med (2002) 347(5):347–56. 10.1056/NEJMra013477
    1. Thomas L, Tyburn B, Ketterlé J, Biao T, Mehdaoui H, Moravie V, et al. . Prognostic significance of clinical grading of patients envenomed by Bothrops lanceolatus in Martinique. Members of the Research Group on Snake Bite in Martinique. Trans R Soc Trop Med Hyg (1998) 92(5):542–5. 10.1016/s0035-9203(98)90907-5
    1. Ward KN, Wortley AG, Quackenbush EB, Gerardo CJ. 396 variability in antivenom treatment in snake envenomations between two major tertiary care emergency departments. Ann Emerg Med (2014) 64(4):S141. 10.1016/j.annemergmed.2014.07.424
    1. Rokyta DR, Wray KP, McGivern JJ, Margres MJ. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus). Toxicon (2015) 98:34–48. 10.1016/j.toxicon.2015.02.015
    1. Lomonte B, Tsai W-C, Ureña-Diaz JM, Sanz L, Mora-Obando D, Sánchez EE, et al. . Venomics of New World pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon. J Proteomics (2014) 96:103–16. 10.1016/j.jprot.2013.10.036
    1. Bickler PE. Amplification of snake venom toxicity by endogenous signaling pathways. Toxins (Basel) (2020) 12(2). 10.3390/toxins12020068
    1. Ibiapina HNS, Costa AG, Sachett JAG, Silva IM, Tarragô AM, Neves JCF, et al. . An Immunological Stairway to Severe Tissue Complication Assembly in Bothrops atrox Snakebites. Front Immunol (2019) 10:1882. 10.3389/fimmu.2019.01882
    1. Rex CJ, Mackessy SP. Venom composition of adult Western Diamondback Rattlesnakes (Crotalus atrox) maintained under controlled diet and environmental conditions shows only minor changes. Toxicon (2019) 164:51–60. 10.1016/j.toxicon.2019.03.027
    1. Liu Y, Zhang X-H, Yu Y, Chen H-X, Zhou Y-L, Zhang X-X. Snake venom characteristic peptides: novel fingerprints for species identification by sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. Analyst (2020) 145(14):5027–31. 10.1039/d0an00461h
    1. Lynch HE, Sanchez AM, D’Souza MP, Rountree W, Denny TN, Kalos M, et al. . Development and implementation of a proficiency testing program for Luminex bead-based cytokine assays. J Immunol Methods (2014) 409:62–71. 10.1016/j.jim.2014.04.011
    1. Patro ARK, Mohanty S, Prusty BK, Singh DK, Gaikwad S, Saswat T, et al. . Cytokine Signature Associated with Disease Severity in Dengue. Viruses (2019) 11(1). 10.3390/v11010034
    1. Muema DM, Akilimali NA, Ndumnego OC, Rasehlo SS, Durgiah R, Ojwach DBA, et al. . Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection. BMC Med (2020) 18(1):81. 10.1186/s12916-020-01529-6
    1. Kojima N, Siebert JC, Maecker H, Rosenberg-Hasson Y, Leon SR, Vargas SK, et al. . Cytokine expression in Treponema pallidum infection. J Transl Med (2019) 17(1):196. 10.1186/s12967-019-1947-7
    1. White RR, Weber RA. Poisonous snakebite in central Texas. Possible indicators for antivenin treatment. Ann Surg (1991) 213(5):466–71. 10.1097/00000658-199105000-00012
    1. Seifert SA, Kirschner R I, Martin N. Recurrent, persistent, or late, new-onset hematologic abnormalities in Crotaline snakebite. Clin Toxicol (2011) 49(4):324–9. 10.3109/15563650.2011.566883
    1. Belard A, Buchman T, Dente CJ, Potter BK, Kirk A, Elster E. The uniformed services university’s surgical critical care initiative (sc2i): bringing precision medicine to the critically ill. Mil Med (2018) 183(suppl_1):487–95. 10.1093/milmed/usx164
    1. Gelbard RB, Hensman H, Schobel S, Khatri V, Tracy BM, Dente CJ, et al. . Random forest modeling can predict infectious complications following trauma laparotomy. J Trauma Acute Care Surg (2019) 87(5):1125–32. 10.1097/TA.0000000000002486
    1. Bradley M, Dente C, Khatri V, Schobel S, Lisboa F, Shi A, et al. . Advanced modeling to predict pneumonia in combat trauma patients. World J Surg (2020) 44(7):2255–62. 10.1007/s00268-019-05294-3
    1. Dente CJ, Bradley M, Schobel S, Gaucher B, Buchman T, Kirk AD, et al. . Towards precision medicine: Accurate predictive modeling of infectious complications in combat casualties. J Trauma Acute Care Surg (2017) 83(4):609–16. 10.1097/TA.0000000000001596
    1. Lisboa FA, Bradley MJ, Hueman MT, Schobel SA, Gaucher BJ, Styrmisdottir EL, et al. . Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds. Surgery (2017) 161(4):1164–73. 10.1016/j.surg.2016.10.011
    1. Vissoci JRN, Tupetz A, Phillips AJ, Kelly PE, Lavonas EJ, Gerardo CJ. What activities do snakebite envenomation patients choose to assess dysfunction? Toxicon (2020) 182:S16–7. 10.1016/j.toxicon.2020.04.043
    1. Gutiérrez JM, Burnouf T, Harrison RA, Calvete JJ, Brown N, Jensen SD, et al. . A Call for Incorporating Social Research in the Global Struggle against Snakebite. PLoS Negl Trop Dis (2015) 9(9):e0003960. 10.1371/journal.pntd.0003960
    1. Larson BA. Calculating disability-adjusted-life-years lost (DALYs) in discrete-time. Cost Eff Resour Alloc (2013) 11(1):18. 10.1186/1478-7547-11-18
    1. Júnior FAN, Jorge ARC, Marinho AD, Silveira JA de M, Alves NTQ, Costa PHS, et al. . Bothrops alternatus Snake Venom Induces Cytokine Expression and Oxidative Stress on Renal Function. Curr Top Med Chem (2019) 19(22):2058–68. 10.2174/1568026619666190809100319
    1. Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, et al. . Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis (2013) 7(7):e2326. 10.1371/journal.pntd.0002326
    1. Yin S, Kokko J, Lavonas E, Mlynarchek S, Bogdan G, Schaeffer T. Factors associated with difficulty achieving initial control with crotalidae polyvalent immune fab antivenom in snakebite patients. Acad Emerg Med (2011) 18(1):46–52. 10.1111/j.1553-2712.2010.00958.x
    1. Freiermuth CE, Lavonas EJ, Anderson VE, Kleinschmidt KC, Sharma K, Rapp-Olsson M, et al. . Antivenom Treatment Is Associated with Fewer Patients using Opioids after Copperhead Envenomation. West J Emerg Med (2019) 20(3):497–505. 10.5811/westjem.2019.3.42693
    1. Seifert SA, Mascarenas DN, Fullerton L, Warrick BJ, Smolinske SC. Unpredicted late-, new-onset thrombocytopenia and hypofibrinogenemia in Fab antivenom-treated rattlesnake envenomation. Toxicon (2020) 184:55–6. 10.1016/j.toxicon.2020.05.026
    1. Lavonas EJ, Gerardo CJ. Letter to the editor: “Safety of nonsteroidal anti-inflammatory drugs in copperhead snakebite patients” by Pham and Mullins, Clin Toxicol 2018 May 18. Clin Toxicol (2019) 57(2):144–5. 10.1080/15563650.2018.1502445
    1. Pham HX, Mullins ME. Safety of nonsteroidal anti-inflammatory drugs in copperhead snakebite patients. Clin Toxicol (2018) 56(11):1121–7. 10.1080/15563650.2018.1468447
    1. Cezarette GN, Sartim MA, Sampaio SV. Inflammation and coagulation crosstalk induced by BJcuL, a galactose-binding lectin isolated from Bothrops jararacussu snake venom. Int J Biol Macromol (2020) 144:296–304. 10.1016/j.ijbiomac.2019.12.015
    1. de Almeida MT, Freitas-de-Sousa LA, Colombini M, Gimenes SNC, Kitano ES, Faquim-Mauro EL, et al. . Inflammatory Reaction Induced by Two Metalloproteinases Isolated from Bothrops atrox Venom and by Fragments Generated from the Hydrolysis of Basement Membrane Components. Toxins (Basel) (2020) 12(2). 10.3390/toxins12020096
    1. Wellmann IAM, Ibiapina HNS, Sachett JAG, Sartim MA, Silva IM, Oliveira SS, et al. . Correlating Fibrinogen Consumption and Profiles of Inflammatory Molecules in Human Envenomation’s by Bothrops atrox in the Brazilian Amazon. Front Immunol (2020) 11:1874. 10.3389/fimmu.2020.01874
    1. Gerardo CJ, Evans CS, Kuchibhatla M, Mando-Vandrick J, Drake WG, Yen M, et al. . Time to antivenom administration is not associated with total antivenom dose administered in a copperhead-predominant snakebite population. Acad Emerg Med (2015) 22(3):308–14. 10.1111/acem.12598

Source: PubMed

3
Abonnere