Soluble ST2 Is a Sensitive and Specific Biomarker for Fulminant Myocarditis

Jin Wang, Mengying He, Huihui Li, Yanghui Chen, Xiang Nie, Yuanyuan Cai, Rong Xie, Lijuan Li, Peng Chen, Yang Sun, Chenze Li, Ting Yu, Houjuan Zuo, Guanglin Cui, Kun Miao, Chunxia Zhao, Jiangang Jiang, Bettina Heidecker, Olga Barnett, Alan Maisel, Chen Chen, Dao Wen Wang, Jin Wang, Mengying He, Huihui Li, Yanghui Chen, Xiang Nie, Yuanyuan Cai, Rong Xie, Lijuan Li, Peng Chen, Yang Sun, Chenze Li, Ting Yu, Houjuan Zuo, Guanglin Cui, Kun Miao, Chunxia Zhao, Jiangang Jiang, Bettina Heidecker, Olga Barnett, Alan Maisel, Chen Chen, Dao Wen Wang

Abstract

Background The aim of the study was to identify biomarkers that can facilitate early diagnosis and treatment of fulminant myocarditis (FM) in order to reduce mortality. Methods and Results First, the expression profiles of circulating cytokines were determined in the plasma samples from 4 patients with FM and 4 controls using human cytokine arrays. The results showed that 39 cytokines from patients with FM were changed at admission. Among them, 8 cytokines returned to normal levels at discharge, including soluble ST2 (sST2), which showed the most marked dynamic changes from disease onset to resolution. Then, in a cohort of 76 patients with FM, 57 patients with acute hemodynamic dysfunction attributable to other causes, and 56 patients with non-FM, receiver operating characteristic curve analyses suggested that plasma sST2 level was able to differentiate FM from non-FM or other FM-unrelated acute heart failure more robustly N-terminal pro-B-type natriuretic peptide or cardiac troponin I. Moreover, longitudinal analysis of plasma sST2 was performed in 10 patients with FM during hospitalization and 16 patients with FM during follow-up. Finally, the diagnostic value was validated in an additional 26 patients with acute onset of unstable hemodynamics. The cutoff value of plasma sST2 for optimal diagnosis of FM was established at 58.39 ng/mL, where a sensitivity of 85.7% and specificity of 94.7% were achieved. Conclusions Elevated sST2 level was associated with mechanical stress or inflammation. Especially, sST2 might be used as a potential biomarker for the rapid diagnosis of FM, which was characterized by strong mechanical stretch stimulation and severe inflammatory response. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03268642.

Keywords: adult; biomarker; fulminant myocarditis; inflammatory; soluble ST2 (sST2).

Figures

Figure 1. Overall study design and the…
Figure 1. Overall study design and the scheme of the validation cohort.
Detailed population information and the corresponding objectives are shown in the Supplemental Tables. AHF indicates acute heart failure; AMI, acute myocardial infarction; DCM, dilated cardiomyopathy; FM, fulminant myocarditis; NFM, nonfulminant myocarditis; and VHD, valvular heart diseases.
Figure 2. Levels of 122 human cytokines…
Figure 2. Levels of 122 human cytokines in the patients with fulminant myocarditis (FM) and controls.
A, Volcano plot of the expression of human cytokines in 4 controls and 4 patients with FM at admission. LIMMA test was used to calculate the significance. The red plots represent differentially expressed proteins with an adjusted P value <0.05, whereas the black plots represent insignificant changes. The horizontal and vertical dotted lines in volcano plots represented the threshold value for the significance used to define upregulation or downregulation of cytokines was a fold change >2 (or <0.5), as well as with an adjusted P value of <0.05. B, Expression heatmap of cytokines that significantly changed in 4 patients with FM at admission compared with 4 controls, which correspond to the red plots in Figure 2A. The normalized levels of cytokines log2 (fold change) were indicated by a different color code (right). C, Volcano plot of the expression of human cytokines in 4 patients with FM at admission and 4 patients with FM at discharge. The red plots represent differentially expressed proteins with a P<0.05, whereas the black plots represent insignificant changes. The horizontal and vertical dotted lines in volcano plots represent the threshold value for the significance used to define upregulation or downregulation of cytokines was a fold change >1, as well as with a P value of <0.05. D, Expression heatmap of cytokines that significantly changed in 4 patients with FM at discharge vs 4 patients with FM at admission. Those cytokines corresponded to the red plots in Figure 2C. A different color code (right) represented normalized level of cytokines log2 (fold change). CRP indicates C‐reactive protein; DKK, Dickkopf protein; DPPIV, dipeptidyl peptidase IV; IFN‐γ, interferon γ; IL, interleukin; MIF, macrophage migration inhibitory factor; OPN, osteopontin; PAI‐1, plasminogen activator inhibitor 1; PDGF, platelet‐derived growth factor; TGFb, transforming growth factor β; TNFb, tumor necrosis factor β; uPAR, urokinase plasminogen activator receptor; and VEFG‐C, vascular endothelial growth factor C.
Figure 3. Diagnostic performance of plasma soluble…
Figure 3. Diagnostic performance of plasma soluble ST2 (sST2) for the detection of fulminant myocarditis (FM).
A, Circulating concentrations of sST2 in 76 patients with 8 control individuals (data are presented as medians and quartile 1 to quartile 3 [Q1–Q3], and Mann‐Whitney test was used to elevate the differences, **P<0.05). B, Circulating concentrations of sST2 in 76 patients with FM and 57 patients with acute heart failure (AHF; data are presented as medians and Q1 to Q3, and Kruskal‐Wallis test was used to elevate the differences, **P<0.05). C, Receiver operating characteristic (ROC) curves of plasma sST2, NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide), and cardiac troponin I (cTnI) in 76 patients with FM and 57 patients with AHF (the Delong test was used to calculate significance). D, Circulating concentrations of sST2 in 56 patients with nonfulminant myocarditis (NFM) and 76 patients with FM (data are presented as medians and Q1 to Q3, and Mann‐Whitney test was used to elevate the differences, **P<0.05). E, ROC curves of plasma sST2, NT‐proBNP, and cTnI in 56 patients with NFM and 76 patients with FM (the Delong test was used to calculate significance). AMI indicates acute myocardial infarction; AUROC, area under the receiver operating characteristic; DCM, dilated cardiomyopathy; and VHD, valvular heart disease.
Figure 4. Correlations between plasma soluble ST2…
Figure 4. Correlations between plasma soluble ST2 (sST2) level and heart damage.
Correlation analysis of plasma sST2 with high‐sensitivity C‐reactive protein (hs‐CRP) (A), ejection fraction (EF) (B), NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide) (C), and cardiac troponin I (cTnI) (D) value in 76 patients with fulminant myocarditis (FM; Spearman correlation and linear regression analysis were used to calculate significance). b indicates regression coefficient.
Figure 5. Plasma levels of soluble ST2…
Figure 5. Plasma levels of soluble ST2 (sST2) in patients with fulminant myocarditis (FM) during hospitalization.
A, Circulating concentrations of sST2 in 10 patients with FM during hospitalization. Correlation analysis of plasma sST2 with NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide) (B), cardiac troponin I (cTnI) (C), and ejection fraction (EF) (D) values during hospitalization (Spearman correlation and linear regression analysis were used to calculate significance). b indicates regression coefficient.
Figure 6. Receiver operating characteristic (ROC) curves…
Figure 6. Receiver operating characteristic (ROC) curves of circulating soluble ST2 (sST2) in the validation cohort.
A, Patients with fulminant myocarditis (FM) vs all other patients compared with NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide), cardiac troponin I (cTnI), and sST2. B, Patients with FM vs all other patients or those with acute myocardial infarction (AMI) using sST2. AUROC indicates area under the receiver operating characteristic.

References

    1. Heymans S, Eriksson U, Lehtonen J, Cooper LT Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68:2348–2364. doi: 10.1016/j.jacc.2016.09.937
    1. Tschope C, Cooper LT, Torre‐Amione G, Van Linthout S. Management of myocarditis‐related cardiomyopathy in adults. Circ Res. 2019;124:1568–1583. doi: 10.1161/CIRCRESAHA.118.313578
    1. Cooper LT Jr. Myocarditis. N Engl J Med. 2009;360:1526–1538. doi: 10.1056/NEJMra0800028
    1. Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno‐Blanes J, Felix SB, Fu M, Helio T, Heymans S, Jahns R, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2013;34:2636–2648, 2648a–2648d. doi: 10.1093/eurheartj/eht210
    1. Nguyen LS, Cooper LT, Kerneis M, Funck‐Brentano C, Silvain J, Brechot N, Hekimian G, Ammirati E, Ben M’Barek B, Redheuil A, et al. Systematic analysis of drug‐associated myocarditis reported in the world health organization pharmacovigilance database. Nat Commun. 2022;13:25. doi: 10.1038/s41467-021-27631-8
    1. Wang D, Li S, Jiang J, Yan J, Zhao C, Wang Y, Ma Y, Zeng H, Guo X, Wang H, et al. Chinese society of cardiology expert consensus statement on the diagnosis and treatment of adult fulminant myocarditis. Sci China Life Sci. 2019;62:187–202. doi: 10.1007/s11427-018-9385-3
    1. Ginsberg F, Parrillo JE. Fulminant myocarditis. Crit Care Clin. 2013;29:465–483. doi: 10.1016/j.ccc.2013.03.004
    1. Gupta S, Markham DW, Drazner MH, Mammen PP. Fulminant myocarditis. Nat Clin Pract Cardiovasc Med. 2008;5:693–706. doi: 10.1038/ncpcardio1331
    1. Ammirati E, Veronese G, Brambatti M, Merlo M, Cipriani M, Potena L, Sormani P, Aoki T, Sugimura K, Sawamura A, et al. Fulminant versus acute nonfulminant myocarditis in patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2019;74:299–311.
    1. Kociol RD, Cooper LT, Fang JC, Moslehi JJ, Pang PS, Sabe MA, Shah RV, Sims DB, Thiene G, Vardeny O, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation. 2020;141:e69–e92. doi: 10.1161/CIR.0000000000000745
    1. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, Francis GS, Lenihan D, Lewis EF, McNamara DM, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation. 2016;134:e579–e646. doi: 10.1161/CIR.0000000000000455
    1. Trachtenberg BH, Hare JM. Inflammatory cardiomyopathic syndromes. Circ Res. 2017;121:803–818. doi: 10.1161/CIRCRESAHA.117.310221
    1. Fung G, Luo H, Qiu Y, Yang D, McManus B. Myocarditis. Circ Res. 2016;118:496–514. doi: 10.1161/CIRCRESAHA.115.306573
    1. Topol EJ. Covid‐19 can affect the heart. Science. 2020;370:408–409. doi: 10.1126/science.abe2813
    1. Caforio AL. Receipt of mRNA vaccine against Covid‐19 and myocarditis. N Engl J Med. 2021;385:2189–2190. doi: 10.1056/NEJMe2116493
    1. Zhang L, Han B, Wang J, Liu Q, Kong Y, Jiang D, Jia H. Differential expression profiles and functional analysis of circular RNAs in children with fulminant myocarditis. Epigenomics. 2019;11:1129–1141. doi: 10.2217/epi-2019-0101
    1. Li S, Xu S, Li C, Ran X, Cui G, He M, Miao K, Zhao C, Yan J, Hui R, et al. A life support‐based comprehensive treatment regimen dramatically lowers the in‐hospital mortality of patients with fulminant myocarditis: a multiple center study. Sci China Life Sci. 2019;62:369–380. doi: 10.1007/s11427-018-9501-9
    1. Friedrich MG, Sechtem U, Schulz‐Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel‐Aty H, Gutberlet M, Prasad S, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53:1475–1487. doi: 10.1016/j.jacc.2009.02.007
    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:e240–e327. doi: 10.1161/CIR.0b013e31829e8776
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González‐Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128
    1. Li H, Chen C, Fan J, Yin Z, Ni L, Cianflone K, Wang Y, Wang DW. Identification of cardiac long non‐coding RNA profile in human dilated cardiomyopathy. Cardiovasc Res. 2018;114:747–758. doi: 10.1093/cvr/cvy012
    1. DeLong ER, DeLong DM, Clarke‐Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595
    1. Choi BC. Slopes of a receiver operating characteristic curve and likelihood ratios for a diagnostic test. Am J Epidemiol. 1998;148:1127–1132. doi: 10.1093/oxfordjournals.aje.a009592
    1. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O'Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, et al. Report of the 1995 World Health Organization/International Society and Federation Of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–842.
    1. Heidecker B, Williams SH, Jain K, Oleynik A, Patriki D, Kottwitz J, Berg J, Garcia JA, Baltensperger N, Lovrinovic M, et al. Virome sequencing in patients with myocarditis. Circ Heart Fail. 2020;13:e007103. doi: 10.1161/CIRCHEARTFAILURE.120.007103
    1. Kakkar R, Lee RT. The IL‐33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7:827–840. doi: 10.1038/nrd2660
    1. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, Rouleau JL, Lee RT. Expression and regulation of ST2, an interleukin‐1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–2966. doi: 10.1161/01.CIR.0000038705.69871.D9
    1. Perez‐Martinez MT, Lacunza‐Ruiz J, Garcia de Lara J, Noguera‐Velasco JA, Lax A, Hernandez‐Vicente A, Asensio‐Lopez MC, Januzzi JL Jr, Ibanez B, Pascual‐Figal DA. Noncardiac production of soluble ST2 in ST‐segment elevation myocardial infarction. J Am Coll Cardiol. 2018;72:1429–1430. doi: 10.1016/j.jacc.2018.06.062
    1. Eklund CM. Proinflammatory cytokines in CRP baseline regulation. Adv Clin Chem. 2009;48:111–136.
    1. Blanco‐Domínguez R, Sánchez‐Díaz R, de la Fuente H, Jiménez‐Borreguero LJ, Matesanz‐Marín A, Relaño M, Jiménez‐Alejandre R, Linillos‐Pradillo B, Tsilingiri K, Martín‐Mariscal ML, et al. A novel circulating microRNA for the detection of acute myocarditis. N Engl J Med. 2021;384:2014–2027. doi: 10.1056/NEJMoa2003608
    1. Nie X, He M, Wang J, Chen P, Wang F, Lai J, Li C, Yu T, Zuo H, Cui G, et al. Circulating miR‐4763‐3p is a novel potential biomarker candidate for human adult fulminant myocarditis. Mol Ther Methods Clin Dev. 2020;17:1079–1087. doi: 10.1016/j.omtm.2020.05.005
    1. Ammirati E, Cipriani M, Lilliu M, Sormani P, Varrenti M, Raineri C, Petrella D, Garascia A, Pedrotti P, Roghi A, et al. Survival and left ventricular function changes in fulminant versus nonfulminant acute myocarditis. Circulation. 2017;136:529–545. doi: 10.1161/CIRCULATIONAHA.117.026386
    1. Coronado MJ, Bruno KA, Blauwet LA, Tschope C, Cunningham MW, Pankuweit S, van Linthout S, Jeon ES, McNamara DM, Krejci J, et al. Elevated sera sST2 is associated with heart failure in men </=50 years old with myocarditis. J Am Heart Assoc. 2019;8:e008968.
    1. Aimo A, Januzzi JL, Vergaro G, Richards AM, Lam CS, Latini R, Anand IS, Cohn JN, Ueland T, Gullestad L, et al. Circulating levels and prognostic value of soluble ST2 in heart failure are less influenced by age than N‐terminal pro‐B‐type natriuretic peptide and high‐sensitivity troponin T. Eur J Heart Fail. 2020;22:2078–2088. doi: 10.1002/ejhf.1701
    1. Felker GM, Hasselblad V, Tang WH, Hernandez AF, Armstrong PW, Fonarow GC, Voors AA, Metra M, McMurray JJ, Butler J, et al. Troponin I in acute decompensated heart failure: insights from the ASCEND‐HF study. Eur J Heart Fail. 2012;14:1257–1264. doi: 10.1093/eurjhf/hfs110
    1. Grodin JL, Butler J, Metra M, Felker GM, Voors AA, Mcmurray JJ, Armstrong PW, Hernandez AF, O'connor C, Starling RC, et al. Circulating cardiac troponin I levels measured by a novel highly sensitive assay in acute decompensated heart failure: insights from the ASCEND‐HF trial. J Card Fail. 2018;24:512–519. doi: 10.1016/j.cardfail.2018.06.008
    1. Garlanda C, Dinarello CA, Mantovani A. The interleukin‐1 family: back to the future. Immunity. 2013;39:1003–1018. doi: 10.1016/j.immuni.2013.11.010
    1. Gachter T, Werenskiold AK, Klemenz R. Transcription of the interleukin‐1 receptor‐related T1 gene is initiated at different promoters in mast cells and fibroblasts. J Biol Chem. 1996;271:124–129. doi: 10.1074/jbc.271.1.124
    1. Griesenauer B, Paczesny S. The ST2/Il‐33 axis in immune cells during inflammatory diseases. Front Immunol. 2017;8:475. doi: 10.3389/fimmu.2017.00475
    1. Ghali R, Altara R, Louch WE, Cataliotti A, Mallat Z, Kaplan A, Zouein FA, Booz GW. IL‐33 (interleukin 33)/sST2 axis in hypertension and heart failure. Hypertension. 2018;72:818–828. doi: 10.1161/HYPERTENSIONAHA.118.11157
    1. Pascual‐Figal DA, Bayes‐Genis A, Asensio‐Lopez MC, Hernandez‐Vicente A, Garrido‐Bravo I, Pastor‐Perez F, Diez J, Ibanez B, Lax A. The interleukin‐1 axis and risk of death in patients with acutely decompensated heart failure. J Am Coll Cardiol. 2019;73:1016–1025. doi: 10.1016/j.jacc.2018.11.054
    1. Kraft L, Erdenesukh T, Sauter M, Tschope C, Klingel K. Blocking the IL‐1beta signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res Cardiol. 2019;114:11.
    1. Luconi N, Risse J, Busato T, Galland J, Mandry D, Voilliot D, Mohamed S, Zuily S, Wahl D. Myocarditis in a young man with adult onset Still's disease successfully treated with Il‐1 blocker. Int J Cardiol. 2015;189:220–222. doi: 10.1016/j.ijcard.2015.04.071
    1. Mildner M, Storka A, Lichtenauer M, Mlitz V, Ghannadan M, Hoetzenecker K, Nickl S, Dome B, Tschachler E, Ankersmit HJ. Primary sources and immunological prerequisites for sST2 secretion in humans. Cardiovasc Res. 2010;87:769–777. doi: 10.1093/cvr/cvq104
    1. Silvester W. Mediator removal with CRRT: complement and cytokines. Am J Kidney Dis. 1997;30:S38–S43. doi: 10.1016/S0272-6386(97)90541-2
    1. Zhai Y, Pan J, Zhang C. The application value of oXiris‐endotoxin adsorption in sepsis. Am J Transl Res. 2021;13:3839–3844.
    1. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, Dries DL, Tang WH, Wu AH, Fang JC, et al. High‐sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4:180–187. doi: 10.1161/CIRCHEARTFAILURE.110.958223
    1. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, McMurray JJ, Wikstrand J, Cleland JG, Aukrust P, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14:268–277. doi: 10.1093/eurjhf/hfs006
    1. Parikh RH, Seliger SL, Christenson R, Gottdiener JS, Psaty BM, deFilippi CR. Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community‐dwelling population. J Am Heart Assoc. 2016;5. doi: 10.1161/JAHA.115.003188
    1. Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL, Bayes‐Genis A, Anand I, Januzzi JL, Emdin M. Prognostic value of soluble suppression of tumorigenicity‐2 in chronic heart failure: a meta‐analysis. JACC Heart Fail. 2017;5:280–286. doi: 10.1016/j.jchf.2016.09.010
    1. Nagy AI, Hage C, Merkely B, Donal E, Daubert JC, Linde C, Lund LH, Manouras A. Left atrial rather than left ventricular impaired mechanics are associated with the pro‐fibrotic ST2 marker and outcomes in heart failure with preserved ejection fraction. J Intern Med. 2018;283:380–391. doi: 10.1111/joim.12723
    1. van Vark LC, Lesman‐Leegte I, Baart SJ, Postmus D, Pinto YM, Orsel JG, Westenbrink BD, Brunner‐la Rocca HP, van Miltenburg AJM, Boersma E, et al. Prognostic value of serial ST2 measurements in patients with acute heart failure. J Am Coll Cardiol. 2017;70:2378–2388. doi: 10.1016/j.jacc.2017.09.026
    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–e161. doi: 10.1161/CIR.0000000000000509
    1. Wang Y, Tan X, Gao H, Yuan H, Hu R, Jia L, Zhu J, Sun L, Zhang H, Huang L, et al. Magnitude of soluble ST2 as a novel biomarker for acute aortic dissection. Circulation. 2018;137:259–269. doi: 10.1161/CIRCULATIONAHA.117.030469
    1. Pascual‐Figal DA, Garrido IP, Blanco R, Minguela A, Lax A, Ordonez‐Llanos J, Bayes‐Genis A, Valdes M, Moore SA, Januzzi JL. Soluble ST2 is a marker for acute cardiac allograft rejection. Ann Thorac Surg. 2011;92:2118–2124. doi: 10.1016/j.athoracsur.2011.07.048
    1. Mathews LR, Lott JM, Isse K, Lesniak A, Landsittel D, Demetris AJ, Sun Y, Mercer DF, Webber SA, Zeevi A, et al. Elevated ST2 distinguishes incidences of pediatric heart and small bowel transplant rejection. Am J Transplant. 2016;16:938–950. doi: 10.1111/ajt.13542
    1. Zhang Z, Zhang NA, Shi J, Dai C, Wu S, Jiao M, Tang X, Liu Y, Li X, Xu Y, et al. Allograft or recipient ST2 deficiency oppositely affected cardiac allograft vasculopathy via differentially altering immune cells infiltration. Front Immunol. 2021;12:657803. doi: 10.3389/fimmu.2021.657803

Source: PubMed

3
Abonnere