Time to Exhale: Additional Value of Expiratory Chest CT in Chronic Obstructive Pulmonary Disease

Joshua Gawlitza, Frederik Trinkmann, Hans Scheffel, Andreas Fischer, John W Nance, Claudia Henzler, Nils Vogler, Joachim Saur, Ibrahim Akin, Martin Borggrefe, Stefan O Schoenberg, Thomas Henzler, Joshua Gawlitza, Frederik Trinkmann, Hans Scheffel, Andreas Fischer, John W Nance, Claudia Henzler, Nils Vogler, Joachim Saur, Ibrahim Akin, Martin Borggrefe, Stefan O Schoenberg, Thomas Henzler

Abstract

Objectives: Diagnostic guidelines for chronic obstructive pulmonary disease (COPD) are based on spirometry and clinical criteria. However, this does not address the pathophysiological complexity of the disease sufficiently. Until now, inspiratory chest computed tomography (CT) has been considered as the preferred imaging method in these patients. We hypothesized that expiratory CT may be superior to demonstrate pathophysiological changes. The aim of this prospective study was to systematically compare lung function tests with quantified CT parameters in inspiration and expiration.

Materials and methods: Forty-six patients with diagnosed COPD underwent spirometry, body plethysmography, and dose-optimized CT in maximal inspiration and expiration. Four quantified CT parameters were acquired in inspiration, expiration, and their calculated delta values. These parameters were correlated with seven established lung function parameters.

Results: For inspiratory scans, a weak-to-moderate correlation with the lung function parameters was found. These correlations significantly improved when adding the expiratory scan (p < 0.05). Moreover, some parameters showed a significant correlation only in expiratory datasets. Calculated delta values showed even stronger correlation with lung function testing.

Conclusions: Expiratory quantified CT and calculated delta values significantly improve the correlation with lung function parameters. Thus, an additional expiratory CT may improve image-based phenotyping of patients with COPD.

Figures

Figure 1
Figure 1
Automatic detection of lung borders and lung parenchyma. Blue areas: low attenuation volume (LAV) with HU values below −950; red areas: high attenuation volume (HAV) with HU values above −200.
Figure 2
Figure 2
Heat map of correlations for inspiratory values. MLD: mean lung density; FWHM: full width half max; LAV: low attenuation volume; VC: vital capacity; FEV1: forced expiratory volume in one second; FEV1%VC: Tiffeneau index; RV: residual volume; TLC: total lung capacity; sRtot: specific total airway resistance.
Figure 3
Figure 3
Heat map of correlations for expiratory values. MLD: mean lung density; FWHM: full width half max; LAV: low attenuation volume; VC: vital capacity; FEV1: forced expiratory volume in one second; FEV1%VC: Tiffeneau index; RV: residual volume; TLC: total lung capacity; sRtot: specific total airway resistance.
Figure 4
Figure 4
Heat map of correlations for delta values. MLD: mean lung density; FWHM: full width half max; LAV: low attenuation volume; VC: vital capacity; FEV1: forced expiratory volume in one second; FEV1%VC: Tiffeneau index; RV: residual volume; TLC: total lung capacity; sRtot: specific total airway resistance.

References

    1. The Top 10 Causes of Death. Fact Sheet N°310. 2014.
    1. Buist A. S., Vollmer W. M., McBurnie M. A. Worldwide burden of COPD in high- and low-income countries. Part I. The burden of obstructive lung disease (BOLD) initiative. International Journal of Tuberculosis and Lung Disease. 2008;12(7):703–708.
    1. Vestbo J., Hurd S. S., Agusti A. G., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine. 2013;187(4):347–365. doi: 10.1164/rccm.201204-0596pp.
    1. Hardie J. A., Buist A. S., Vollmer W. M., et al. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. European Respiratory Journal. 2002;20(5):1117–1122. doi: 10.1183/09031936.02.00023202.
    1. Cerveri I., Corsico A. G., Accordini S., et al. Underestimation of airflow obstruction among young adults using FEV1/FVC <70% as a fixed cut-off: a longitudinal evaluation of clinical and functional outcomes. Thorax. 2008;63(12):1040–1045. doi: 10.1136/thx.2008.095554.
    1. Trinkmann F., Henzler T., Saur J. Symptoms in smokers with preserved pulmonary function. New England Journal of Medicine. 2016;375(9):895–896. doi: 10.1056/nejmc1608235.
    1. Trinkmann F., Saur D., Roth K., et al. Multiple breath washout (MBW) using sulfur hexafluoride–proof of concept in COPD. European Respiratory Journal. 2016;48(60):p. PA3440. doi: 10.1183/13993003.congress-2016.PA3440.
    1. Woodruff P. G., Barr R. G., Bleecker E., et al. Clinical significance of symptoms in smokers with preserved pulmonary function. New England Journal of Medicine. 2016;374(19):1811–1821. doi: 10.1056/nejmoa1505971.
    1. Ostridge K., Wilkinson T. M. Present and future utility of computed tomography scanning in the assessment and management of COPD. European Respiratory Journal. 2016;48(1):216–228. doi: 10.1183/13993003.00041-2016.
    1. Haruna A., Muro S., Nakano Y., et al. CT scan findings of emphysema predict mortality in COPD. Chest. 2010;138(3):635–640. doi: 10.1378/chest.09-2836.
    1. Johannessen A., Skorge T. D., Bottai M., et al. Mortality by level of emphysema and airway wall thickness. American Journal of Respiratory and Critical Care Medicine. 2013;187(6):602–608. doi: 10.1164/rccm.201209-1722oc.
    1. Jairam P. M., van der Graaf Y., Lammers J. W., Mali W. P. Th. M., de Jong P. A. Incidental findings on chest CT imaging are associated with increased COPD exacerbations and mortality. Thorax. 2015;70(8):725–731. doi: 10.1136/thoraxjnl-2014-206160.
    1. Jankowich M. D., Rounds S. I. Combined pulmonary fibrosis and emphysema syndrome: a review. Chest. 2012;141(1):222–231. doi: 10.1378/chest.11-1062.
    1. Celli B. R., Decramer M., Wedzicha J. A., et al. An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. European Respiratory Review. 2015;24(136):159–172.
    1. Murphy K., Pluim J. P., van Rikxoort E. M., et al. Toward automatic regional analysis of pulmonary function using inspiration and expiration thoracic CT. Medical Physics. 2012;39(3):1650–1662. doi: 10.1118/1.3687891.
    1. Koo H. K., Jin K. N., Kim D. K., et al. Association of incidental emphysema with annual lung function decline and future development of airflow limitation. International Journal of Chronic Obstructive Pulmonary Disease. 2016;11:161–166. doi: 10.2147/copd.s96809.
    1. Baldi S., Miniati M., Bellina C. R., et al. Relationship between extent of pulmonary emphysema by high-resolution computed tomography and lung elastic recoil in patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2001;164(4):585–589. doi: 10.1164/ajrccm.164.4.2010066.
    1. Lynch D. A., Austin J. H., Hogg J. C., et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology. 2015;277(1):192–205. doi: 10.1148/radiol.2015141579.
    1. Quanjer P. H., Stanojevic S., Cole T. J., et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. European Respiratory Journal. 2012;40(6):1324–1343. doi: 10.1183/09031936.00080312.
    1. Pellegrino R., Viegi G., Brusasco V., et al. Interpretative strategies for lung function tests. European Respiratory Journal. 2005;26(5):948–968. doi: 10.1183/09031936.05.00035205.
    1. Weis M., Henzler T., Nance J. W., Jr., et al. Radiation dose comparison between 70 kvp and 100 kvp with spectral beam shaping for non-contrast-enhanced pediatric chest computed tomography: a prospective randomized controlled study. Investigative Radiology. 2017;52(3):155–162. doi: 10.1097/rli.0000000000000325.
    1. Gordic S., Morsbach F., Schmidt B., et al. Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping. Investigative Radiology. 2014;49(7):465–473. doi: 10.1097/rli.0000000000000037.
    1. Gevenois P. A., de Maertelaer V., De Vuyst P., Zanen J., Yernault J. C. Comparison of computed density and macroscopic morphometry in pulmonary emphysema. American Journal of Respiratory and Critical Care Medicine. 1995;152(2):653–657. doi: 10.1164/ajrccm.152.2.7633722.
    1. Gevenois P. A., De Vuyst P., de Maertelaer V., et al. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Journal of Respiratory and Critical Care Medicine. 1996;154(1):187–192. doi: 10.1164/ajrccm.154.1.8680679.
    1. Madani A., Zanen J., de Maertelaer V., Gevenois P. A. Pulmonary emphysema: objective quantification at multi-detector row CT–comparison with macroscopic and microscopic morphometry. Radiology. 2006;238(3):1036–1043. doi: 10.1148/radiol.2382042196.
    1. Diedenhofen B., Musch J. cocor: a comprehensive solution for the statistical comparison of correlations. PLoS One. 2015;10(4) doi: 10.1371/journal.pone.0121945.e0121945
    1. Mohamed Hoesein F. A., de Jong P. A., Lammers J. W., et al. Contribution of CT quantified emphysema, air trapping and airway wall thickness on pulmonary function in male smokers with and without COPD. COPD. 2014;11(5):503–509. doi: 10.3109/15412555.2014.933952.
    1. Mets O. M., Zanen P., Lammers J. W., et al. Early identification of small airways disease on lung cancer screening CT: comparison of current air trapping measures. Lung. 2012;190(6):629–633. doi: 10.1007/s00408-012-9422-8.
    1. Timmins S. C., Diba C., Farrow C. E., et al. The relationship between airflow obstruction, emphysema extent, and small airways function in COPD. Chest. 2012;142(2):312–319. doi: 10.1378/chest.11-2169.
    1. Nambu A., Zach J., Schroeder J., et al. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: relationship to physiological measurements, clinical index and visual assessment of airway disease. European Journal of Radiology. 2016;85(11):2144–2151. doi: 10.1016/j.ejrad.2016.09.010.
    1. Schroeder J. D., McKenzie A. S., Zach J. A., et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. American Journal of Roentgenology. 2013;201(3):W460–W470. doi: 10.2214/ajr.12.10102.
    1. Martinez C. H., Diaz A. A., Meldrum C., et al. Age and small airway imaging abnormalities in subjects with and without airflow obstruction in SPIROMICS. American Journal of Respiratory and Critical Care Medicine. 2016;195(4):464–472. doi: 10.1164/rccm.201604-0871oc.
    1. Blair E., Hickam J. The effect of change in body position on lung volume and intrapulmonary gas mixing in normal subjects. Journal of Clinical Investigation. 1955;34(3):p. 383. doi: 10.1172/jci103086.
    1. Zanforlin A., Sorino C., Sferrazza Papa G. F. Towards a multi-dimensional approach to COPD. Minerva Medica. 2016;107(1):1–6.

Source: PubMed

3
Abonnere