The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled cross over study

Adam M Deane, Marianne J Chapman, Robert J L Fraser, Carly M Burgstad, Laura K Besanko, Michael Horowitz, Adam M Deane, Marianne J Chapman, Robert J L Fraser, Carly M Burgstad, Laura K Besanko, Michael Horowitz

Abstract

Introduction: Hyperglycaemia occurs frequently in the critically ill, affects outcome adversely, and is exacerbated by enteral feeding. Furthermore, treatment with insulin in this group is frequently complicated by hypoglycaemia. In healthy patients and those with type 2 diabetes, exogenous glucagon-like peptide-1 (GLP-1) decreases blood glucose by suppressing glucagon, stimulating insulin and slowing gastric emptying. Because the former effects are glucose-dependent, the use of GLP-1 is not associated with hypoglycaemia. The objective of this study was to establish if exogenous GLP-1 attenuates the glycaemic response to enteral nutrition in patients with critical illness induced hyperglycaemia.

Methods: Seven mechanically ventilated critically ill patients, not previously known to have diabetes, received two intravenous infusions of GLP-1 (1.2 pmol/kg/min) and placebo (4% albumin) over 270 minutes. Infusions were administered on consecutive days in a randomised, double-blind fashion. On both days a mixed nutrient liquid was infused, via a post-pyloric feeding catheter, at a rate of 1.5 kcal/min between 30 and 270 minutes. Blood glucose and plasma GLP-1, insulin and glucagon concentrations were measured.

Results: In all patients, exogenous GLP-1 infusion reduced the overall glycaemic response during enteral nutrient stimulation (AUC30-270 min GLP-1 (2077 +/- 144 mmol/l min) vs placebo (2568 +/- 208 mmol/l min); P = 0.02) and the peak blood glucose (GLP-1 (10.1 +/- 0.7 mmol/l) vs placebo (12.7 +/- 1.0 mmol/l); P < 0.01). The insulin/glucose ratio at 270 minutes was increased with GLP-1 infusion (GLP-1 (9.1 +/- 2.7) vs. placebo (5.8 +/- 1.8); P = 0.02) but there was no difference in absolute insulin concentrations. There was a transient, non-sustained, reduction in plasma glucagon concentrations during GLP-1 infusion (t = 30 minutes GLP-1 (90 +/- 12 pmol/ml) vs. placebo (104 +/- 10 pmol/ml); P < 0.01).

Conclusions: Acute, exogenous GLP-1 infusion markedly attenuates the glycaemic response to enteral nutrition in the critically ill. These observations suggest that GLP-1 and/or its analogues have the potential to manage hyperglycaemia in the critically ill.

Trial registration: Australian New Zealand Clinical Trials Registry number: ACTRN12609000093280.

Figures

Figure 1
Figure 1
Exogenous glucagon-like peptide-1 (GLP-1) attenuated the rise in blood glucose levels and the overall glycaemic response to intra-duodenal nutrient infusion. (AUC30–270 min GLP-1 2077 ± 144 mmol/l min vs. placebo 2568 ± 208 mmol/l min; P = 0.02). Data are mean ± SEM (n = 7). * P < 0.05.
Figure 2
Figure 2
Plasma Hormone concentrations. There was no increase in total postprandial insulin secretion (a), however the plasma insulin/blood glucose ratio was increased at t = 270 minutes (b). Exogenous glucagon-like peptide-1 (GLP-1) infusion increased plasma GLP-1 concentrations (c) and caused a transient, but non-sustained, suppression of glucagon (d). Data are mean ± SEM (n = 7). * P < 0.05.

References

    1. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87:978–982. doi: 10.1210/jc.87.3.978.
    1. Berghe G van den, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–1367. doi: 10.1056/NEJMoa011300.
    1. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K, German Competence Network Sepsis (SepNet) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–139. doi: 10.1056/NEJMoa070716.
    1. Gerstein HC, Miller ME, Byington RP, Goff DC, Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH, Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–2559. doi: 10.1056/NEJMoa0802743.
    1. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27:355–373. doi: 10.1177/0148607103027005355.
    1. Preiser JC, Devos P. Clinical experience with tight glucose control by intensive insulin therapy. Crit Care Med. 2007;35:S503–507. doi: 10.1097/01.CCM.0000278046.24345.C7.
    1. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91:301–307. doi: 10.1172/JCI116186.
    1. Little TJ, Pilichiewicz AN, Russo A, Phillips L, Jones KL, Nauck MA, Wishart J, Horowitz M, Feinle-Bisset C. Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J Clin Endocrinol Metab. 2006;91:1916–1923. doi: 10.1210/jc.2005-2220.
    1. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hufner M, Schmiegel WH. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab. 2002;87:1239–1246. doi: 10.1210/jc.87.3.1239.
    1. Meier JJ, Gethmann A, Nauck MA, Gotze O, Schmitz F, Deacon CF, Gallwitz B, Schmidt WE, Holst JJ. The glucagon-like peptide-1 metabolite GLP-1-(9–36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans. Am J Physiol Endocrinol Metab. 2006;290:E1118–1123. doi: 10.1152/ajpendo.00576.2005.
    1. Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, Holst JJ, Schmidt WE, Gallwitz B. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med. 2004;32:848–851. doi: 10.1097/01.CCM.0000114811.60629.B5.
    1. Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Hegarty C, Bailey M. Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit Care Med. 2008;36:2249–2255. doi: 10.1097/CCM.0b013e318181039a.
    1. Vilsboll T, Agerso H, Krarup T, Holst JJ. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003;88:220–224. doi: 10.1210/jc.2002-021053.
    1. Stapleton RD, Jones N, Heyland DK. Feeding critically ill patients: what is the optimal amount of energy? Crit Care Med. 2007;35:S535–540. doi: 10.1097/01.CCM.0000279204.24648.44.
    1. Marik PE, Raghavan M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med. 2004;30:748–756. doi: 10.1007/s00134-004-2167-y.
    1. Horowitz M, Nauck MA. To be or not to be–an incretin or enterogastrone? Gut. 2006;55:148–150. doi: 10.1136/gut.2005.071787.
    1. Meier JJ, Kemmeries G, Holst JJ, Nauck MA. Erythromycin antagonizes the deceleration of gastric emptying by glucagon-like peptide 1 and unmasks its insulinotropic effect in healthy subjects. Diabetes. 2005;54:2212–2218. doi: 10.2337/diabetes.54.7.2212.
    1. Deane A, Chapman MJ, Fraser RJ, Bryant LK, Burgstad C, Nguyen NQ. Mechanisms underlying feed intolerance in the critically ill: Implications for treatment. World J Gastroenterol. 2007;13:3909–3917.
    1. Mussig K, Oncu A, Lindauer P, Heininger A, Aebert H, Unertl K, Ziemer G, Haring HU, Gallwitz B, Holst JJ. Effects of intravenous glucagon-like peptide-1 on glucose control and hemodynamics after coronary artery bypass surgery in patients with type 2 diabetes. Am J Cardiol. 2008;102:646–647. doi: 10.1016/j.amjcard.2008.06.029.
    1. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359:824–830. doi: 10.1016/S0140-6736(02)07952-7.

Source: PubMed

3
Abonnere