5 Years of Exercise Intervention Did Not Benefit Cognition Compared to the Physical Activity Guidelines in Older Adults, but Higher Cardiorespiratory Fitness Did. A Generation 100 Substudy

Daniel R Sokołowski, Tor I Hansen, Henning H Rise, Line S Reitlo, Ulrik Wisløff, Dorthe Stensvold, Asta K Håberg, Daniel R Sokołowski, Tor I Hansen, Henning H Rise, Line S Reitlo, Ulrik Wisløff, Dorthe Stensvold, Asta K Håberg

Abstract

Background: Aerobic exercise is proposed to attenuate cognitive decline in aging. We investigated the effect of different aerobic exercise interventions and cardiorespiratory fitness (CRF) upon cognition throughout a 5-year exercise intervention in older adults. Methods: 106 older adults (52 women, age 70-77 years) were randomized into high-intensity interval training (HIIT; ∼90% peak heart rate), moderate-intensity continuous training (MICT; ∼70% peak heart rate), or control for 5 years. The HIIT and MICT groups performed supervised training twice weekly, while the control group was asked to follow the national physical activity guidelines (30 min of physical activity/day). At baseline, 1-, 3-, and 5-year follow-up, participants partook in cognitive testing (spatial memory, verbal memory, pattern separation, processing speed, working memory, and planning ability), underwent clinical testing, and filled out health-related questionnaires. Linear mixed models were used to assess the effects of the exercise group and CRF (measured as peak and max oxygen uptake) on each cognitive test. The effects of changes in CRF on changes in each cognitive test score throughout the intervention were also assessed. The associations between baseline CRF and cognitive abilities at the follow-ups were investigated using linear regressions. Results: There was no group-by-time interaction on the cognitive measures, and neither HIIT nor MICT participation was associated with better cognitive performance than control at any time point during the 5-year intervention. All groups increased their CRF similarly during the 1st year and subsequently declined back to baseline levels after 5 years. A higher CRF was associated with higher processing speed throughout the intervention while increasing CRF during the intervention was associated with better working memory and worse pattern separation. Higher CRF at baseline predicted consistently better processing speed and verbal memory performance. Conclusion: In this first 5-year randomized controlled trial investigating the effects of HIIT, MICT, and physical activity according to national guidelines on cognition, we observed no effect of exercise intervention group on cognition when compared to following the national physical activity guidelines. Still, the results showed that higher CRF and increasing CRF benefited multiple, but not all, cognitive abilities in older adults. Clinical Trial Registration: www.ClinicalTrials.gov, identifier [NCT01666340].

Keywords: aerobic training; cognitive aging; executive abilities; memory; neuropsychology; prevention; recall; seniors.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sokołowski, Hansen, Rise, Reitlo, Wisløff, Stensvold and Håberg.

Figures

FIGURE 1
FIGURE 1
Flowchart of inclusion and attrition. M: men; W: women.
FIGURE 2
FIGURE 2
Cardiorespiratory fitness levels, measured as peak oxygen uptake (VO2peak), in the Control (gray), high-intensity interval training (HIIT, orange), and moderate-intensity continuous training (MICT, blue) group over time. Whiskers represent one standard deviation below and above the group mean.
FIGURE 3
FIGURE 3
Performance of the Control (gray), moderate-intensity continuous training (MICT, blue), and high-intensity interval training (HIIT, orange) groups on the cognitive tests over time. Whiskers represent one standard deviation below and above the group mean.

References

    1. Ahlskog J. E., Geda Y. E., Graff-Radford N. R., Petersen R. C. (2011). Physical Exercise as a Preventive or Disease-Modifying Treatment of Dementia and Brain Aging. Mayo Clin. Proc. 86 876–884. 10.4065/mcp.2011.0252
    1. Andel R., Crowe M., Pedersen N. L., Fratiglioni L., Johansson B., Gatz M. (2008). Physical Exercise at Midlife and Risk of Dementia Three Decades Later: A Population-Based Study of Swedish Twins. J. Gerontol. Ser. A 63 62–66. 10.1093/gerona/63.1.62
    1. Angevaren M., Aufdemkampe G., Verhaar H. J. J., Aleman A., Vanhees L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008:CD005381.ub3. 10.1002/14651858.CD005381.pub3
    1. Aspenes S. T., Nilsen T. I. L., Skaug E.-A., Bertheussen G. F., Ellingsen Ø, Vatten L., et al. (2011). Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med. Sci. Sports Exerc. 43 1465–1473. 10.1249/MSS.0b013e31820ca81c
    1. Barnes D. E., Yaffe K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10 819–828. 10.1016/S1474-4422(11)70072-2
    1. Barnes D. E., Yaffe K., Satariano W. A., Tager I. B. (2003). A Longitudinal Study of Cardiorespiratory Fitness and Cognitive Function in Healthy Older Adults. J. Am. Geriatr. Soc. 51 459–465. 10.1046/j.1532-5415.2003.51153.x
    1. Becker S. (2017). Neurogenesis and pattern separation: time for a divorce. WIREs Cogn. Sci. 8:e1427. 10.1002/wcs.1427
    1. Beltz N. M., Gibson A. L., Janot J. M., Kravitz L., Mermier C. M., Dalleck L. C. (2016). Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations. J. Sports Med. 2016:e3968393. 10.1155/2016/3968393
    1. Bernstein E. E., McNally R. J. (2019). Examining the Effects of Exercise on Pattern Separation and the Moderating Effects of Mood Symptoms. Behav. Ther. 50 582–593. 10.1016/j.beth.2018.09.007
    1. Blumenthal J., Emery C., Madden D., George L., Coleman E., Riddle M., et al. (1989). Cardiovascular and Behavioral Effects of Aerobic Exercise Training in Healthy Older Men and Women. J. Gerontol. 44 M147–M157. 10.1093/geronj/44.5.M147
    1. Bolz L., Heigele S., Bischofberger J. (2015). Running Improves Pattern Separation during Novel Object Recognition. Brain Plast. 1 129–141. 10.3233/BPL-150010
    1. Bopp K. L., Verhaeghen P. (2005). Aging and Verbal Memory Span: A Meta-Analysis. J. Gerontol. Ser. B 60 223–233. 10.1093/geronb/60.5.P223
    1. Borg G. A. V. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc 14, 377–381.
    1. Bowling A., Dieppe P. (2005). What is successful ageing and who should define it? BMJ 331 1548–1551.
    1. Bragantini D., Sivertsen B., Gehrman P., Lydersen S., Güzey I. C. (2019). Genetic polymorphisms associated with sleep-related phenotypes; relationships with individual nocturnal symptoms of insomnia in the HUNT study. BMC Med. Genet. 20:179. 10.1186/s12881-019-0916-6
    1. Bucks R. S., Willison J. R. (1997). Development and validation of the Location Learning Test (LLT): A test of visuo-spatial learning designed for use with older adults and in dementia. Clin. Neuropsychol. 11 273–286. 10.1080/13854049708400456
    1. Cabral D. F., Rice J., Morris T. P., Rundek T., Pascual-Leone A., Gomes-Osman J. (2019). Exercise for Brain Health: An Investigation into the Underlying Mechanisms Guided by Dose. Neurotherapeutics 16 580–599. 10.1007/s13311-019-00749-w
    1. Calverley T. A., Ogoh S., Marley C. J., Steggall M., Marchi N., Brassard P., et al. (2020). HIITing the brain with exercise: mechanisms, consequences and practical recommendations. J. Physiol. 598 2513–2530. 10.1113/JP275021
    1. Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14 125–130. 10.1111/1467-9280.t01-1-01430
    1. Compton D. M., Bachman L. D., Brand D., Avet T. L. (2000). Age-associated changes in cognitive function in highly educated adults: emerging myths and realities. Int. J. Geriatr. Psychiatry 15 75–85.
    1. Creer D. J., Romberg C., Saksida L. M., Praag H., van, Bussey T. J. (2010). Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci. 107 2367–2372. 10.1073/pnas.0911725107
    1. Di Liegro C. M., Schiera G., Proia P., Di Liegro I. (2019). Physical Activity and Brain Health. Genes 10:genes10090720. 10.3390/genes10090720
    1. Dodge H. H., Du Y., Saxton J. A., Ganguli M. (2006). Cognitive domains and trajectories of functional independence in nondemented elderly persons. J. Gerontol. A Biol. Sci. Med. Sci. 61 1330–1337. 10.1093/gerona/61.12.1330
    1. Ellis K. A., Bush A. I., Darby D., De Fazio D., Foster J., Hudson P., et al. (2009). The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21 672–687. 10.1017/S1041610209009405
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. 108 3017–3022. 10.1073/pnas.1015950108
    1. Etnier J. L., Caselli R. J., Reiman E. M., Alexander G. E., Sibley B. A., Tessier D., et al. (2007). Cognitive performance in older women relative to ApoE-epsilon4 genotype and aerobic fitness. Med. Sci. Sports Exerc. 39 199–207. 10.1249/01.mss.0000239399.85955.5e
    1. Etnier J. L., Salazar W., Landers D. M., Petruzzello S. J., Han M., Nowell P. (1997). The Influence of Physical Fitness and Exercise upon Cognitive Functioning: A Meta-Analysis. J. Sport Exerc. Psychol. 19 249–277. 10.1123/jsep.19.3.249
    1. Gibbons R. J., Balady G. J., Beasley J. W., Bricker J. T., Duvernoy W. F. C., Froelicher V. F., et al. (1997). ACC/AHA Guidelines for Exercise Testing: A report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on Exercise Testing). J. Am. Coll. Cardiol. 30 260–311. 10.1016/S0735-1097(97)00150-2
    1. Gomes-Osman J., Cabral D. F., Morris T. P., McInerney K., Cahalin L. P., Rundek T., et al. (2018). Exercise for cognitive brain health in aging: A systematic review for an evaluation of dose. Neurol. Clin. Pract. 8 257–265. 10.1212/CPJ.0000000000000460
    1. Gow A. J., Pattie A., Deary I. J. (2017). Lifecourse Activity Participation From Early, Mid, and Later Adulthood as Determinants of Cognitive Aging: The Lothian Birth Cohort 1921. J. Gerontol. B. Psychol. Sci. Soc. Sci. 72 25–37. 10.1093/geronb/gbw124
    1. Hamer M., Muniz Terrera G., Demakakos P. (2018). Physical activity and trajectories in cognitive function: English Longitudinal Study of Ageing. J. Epidemiol. Community Health 72 477–483. 10.1136/jech-2017-210228
    1. Hansen T. I., Haferstrom E. C. D., Brunner J. F., Lehn H., Håberg A. K. (2015). Initial validation of a web-based self-administered neuropsychological test battery for older adults and seniors. J. Clin. Exp. Neuropsychol. 37 581–594. 10.1080/13803395.2015.1038220
    1. Hansen T. I., Lehn H., Evensmoen H. R., Håberg A. K. (2016). Initial assessment of reliability of a self-administered web-based neuropsychological test battery. Comput. Hum. Behav. 63 91–97. 10.1016/j.chb.2016.05.025
    1. Hickman S. E., Howieson D. B., Dame A., Sexton G., Kaye J. (2000). Longitudinal Analysis of the Effects of the Aging Process on Neuropsychological Test Performance in the Healthy Young-Old and Oldest-Old. Dev. Neuropsychol. 17 323–337. 10.1207/S15326942DN1703_3
    1. Howieson D. B., Carlson N. E., Moore M. M., Wasserman D., Abendroth C. D., Payne-Murphy J., et al. (2008). Trajectory of mild cognitive impairment onset. J. Int. Neuropsychol. Soc. JINS 14 192–198. 10.1017/S1355617708080375
    1. Idland A.-V., Sala-Llonch R., Watne L. O., Brækhus A., Hansson O., Blennow K., et al. (2020). Biomarker profiling beyond amyloid and tau: cerebrospinal fluid markers, hippocampal atrophy, and memory change in cognitively unimpaired older adults. Neurobiol. Aging 93 1–15. 10.1016/j.neurobiolaging.2020.04.002
    1. Johnston S. T., Shtrahman M., Parylak S., Gonçalves J. T., Gage F. H. (2016). Paradox of Pattern Separation and Adult Neurogenesis: A Dual Role for New Neurons Balancing Memory Resolution and Robustness. Neurobiol. Learn. Mem. 129 60–68. 10.1016/j.nlm.2015.10.013
    1. Jonasson L. S., Nyberg L., Kramer A. F., Lundquist A., Riklund K., Boraxbekk C.-J. (2017). Aerobic Exercise Intervention, Cognitive Performance, and Brain Structure: Results from the Physical Influences on Brain in Aging (PHIBRA) Study. Front. Aging Neurosci. 8:00336. 10.3389/fnagi.2016.00336
    1. Kim S.-H., Kim M., Ahn Y.-B., Lim H.-K., Kang S.-G., Cho J., et al. (2011). Effect of Dance Exercise on Cognitive Function in Elderly Patients with Metabolic Syndrome: A Pilot Study. J. Sports Sci. Med. 10 671–678.
    1. Klusmann V., Evers A., Schwarzer R., Schlattmann P., Reischies F. M., Heuser I., et al. (2010). Complex mental and physical activity in older women and cognitive performance: a 6-month randomized controlled trial. J. Gerontol. A. Biol. Sci. Med. Sci. 65 680–688. 10.1093/gerona/glq053
    1. Kovacevic A., Fenesi B., Paolucci E., Heisz J. J. (2020). The effects of aerobic exercise intensity on memory in older adults. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 45 591–600. 10.1139/apnm-2019-0495
    1. Kramer A., Hahn S., Mcauley E., Cohen N., Banich M., Harrison C., et al. (2002). Exercise, aging and cognition: healthy body, healthy mind. Illinois, IL: University of Illinois.
    1. Langlois F., Vu T. T. M., Chassé K., Dupuis G., Kergoat M.-J., Bherer L. (2013). Benefits of Physical Exercise Training on Cognition and Quality of Life in Frail Older Adults. J. Gerontol. Ser. B 68 400–404. 10.1093/geronb/gbs069
    1. Laurin D., Verreault R., Lindsay J., MacPherson K., Rockwood K. (2001). Physical Activity and Risk of Cognitive Impairment and Dementia in Elderly Persons. Arch. Neurol. 58 498–504. 10.1001/archneur.58.3.498
    1. Lezak M. D., Howieson D. B., Loring D. W., Hannay H. J., Fischer J. S. (2004). Neuropsychological assessment, 4th Edn. New York, NY: Oxford University Press.
    1. Lin Y.-H., Chen Y.-C., Tseng Y.-C., Tsai S.-T., Tseng Y.-H. (2020). Physical activity and successful aging among middle-aged and older adults: a systematic review and meta-analysis of cohort studies. Aging 12 7704–7716. 10.18632/aging.103057
    1. Livingston G., Sommerlad A., Orgeta V., Costafreda S. G., Huntley J., Ames D., et al. (2017). Dementia prevention, intervention, and care. Lancet 390 2673–2734. 10.1016/S0140-6736(17)31363-6
    1. Loe H., Rognmo Ø, Saltin B., Wisløff U. (2013). Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLoS One 8:e64319. 10.1371/journal.pone.0064319
    1. Lundervold A. J., Wollschläger D., Wehling E. (2014). Age and sex related changes in episodic memory function in middle aged and older adults. Scand. J. Psychol. 55 225–232. 10.1111/sjop.12114
    1. Madden D. J., Blumenthal J. A., Allen P. A., Emery C. F. (1989). Improving aerobic capacity in healthy older adults does not necessarily lead to improved cognitive performance. Psychol. Aging 4 307–320. 10.1037/0882-7974.4.3.307
    1. Marmeleira J. F., Godinho M. B., Fernandes O. M. (2009). The effects of an exercise program on several abilities associated with driving performance in older adults. Accid. Anal. Prev. 41 90–97. 10.1016/j.aap.2008.09.008
    1. Mistridis P., Krumm S., Monsch A. U., Berres M., Taylor K. I. (2015). The 12 Years Preceding Mild Cognitive Impairment Due to Alzheimer’s Disease: The Temporal Emergence of Cognitive Decline. J. Alzheimers Dis. JAD 48 1095–1107. 10.3233/JAD-150137
    1. Moul J. L., Goldman B., Warren B. (1995). Physical Activity and Cognitive Performance in the Older Population. J. Aging Phys. Act. 3 135–145. 10.1123/japa.3.2.135
    1. Mungas D., Beckett L., Harvey D., Farias S. T., Reed B., Carmichael O., et al. (2010). Heterogeneity of cognitive trajectories in diverse older persons. Psychol. Aging 25 606–619. 10.1037/a0019502
    1. Mykletun A., Stordal E., Dahl A. A. (2001). Hospital Anxiety and Depression (HAD) scale: factor structure, item analyses and internal consistency in a large population. Br. J. Psychiatry J. Ment. Sci. 179 540–544. 10.1192/bjp.179.6.540
    1. Nasreddine Z. S., Phillips N. A., Bédirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 695–699. 10.1111/j.1532-5415.2005.53221.x
    1. Ngandu T., Lehtisalo J., Solomon A., Levälahti E., Ahtiluoto S., Antikainen R., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet Lond. Engl. 385 2255–2263. 10.1016/S0140-6736(15)60461-5
    1. Northey J. M., Cherbuin N., Pumpa K. L., Smee D. J., Rattray B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52 154–160. 10.1136/bjsports-2016-096587
    1. Nyberg L., Pudas S. (2019). Successful Memory Aging. Annu. Rev. Psychol. 70 219–243. 10.1146/annurev-psych-010418-103052
    1. Panton L. B., Graves J. E., Pollock M. L., Hagberg J. M., Chen W. (1990). Effect of aerobic and resistance training on fractionated reaction time and speed of movement. J. Gerontol. 45 M26–M31. 10.1093/geronj/45.1.m26
    1. Poole D. C., Jones A. M. (2017). Measurement of the maximum oxygen uptake V̇o2max: V̇o2peak is no longer acceptable. J. Appl. Physiol. Bethesda Md 122 997–1002. 10.1152/japplphysiol.01063.2016
    1. Rainville C., Amieva H., Lafont S., Dartigues J.-F., Orgogozo J.-M., Fabrigoule C. (2002). Executive function deficits in patients with dementia of the Alzheimer’s type A study with a Tower of London task. Arch. Clin. Neuropsychol. 17 513–530. 10.1093/arclin/17.6.513
    1. Rebok G. W., Ball K., Guey L. T., Jones R. N., Kim H.-Y., King J. W., et al. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J. Am. Geriatr. Soc. 62 16–24. 10.1111/jgs.12607
    1. Reynolds C. A., Finkel D. (2015). A meta-analysis of heritability of cognitive aging: minding the “missing heritability” gap. Neuropsychol. Rev. 25 97–112. 10.1007/s11065-015-9280-2
    1. Rönnlund M., Nyberg L., Bäckman L., Nilsson L.-G. (2005). Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol. Aging 2005:20.1.3. 10.1037/0882-7974.20.1.3
    1. Rothman K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiol. Camb. Mass 1 43–46.
    1. Rothman K. J. (2014). Six Persistent Research Misconceptions. J. Gen. Intern. Med. 29 1060–1064. 10.1007/s11606-013-2755-z
    1. Sabia S., Dugravot A., Dartigues J.-F., Abell J., Elbaz A., Kivimäki M., et al. (2017). Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. BMJ Br. Med. J. Online Lond. 357:j2709. 10.1136/bmj.j2709
    1. Sahay A., Scobie K. N., Hill A. S., O’Carroll C. M., Kheirbek M. A., Burghardt N. S., et al. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472 466–470. 10.1038/nature09817
    1. Salthouse T. A. (2019). Trajectories of normal cognitive aging. Psychol. Aging 34 17–24. 10.1037/pag0000288
    1. Salthouse T. A., Babcock R. L. (1991). Decomposing adult age differences in working memory. Dev. Psychol. 27 763–776. 10.1037/0012-1649.27.5.763
    1. Scherder E. J. A., Van Paasschen J., Deijen J.-B., Van Der Knokke S., Orlebeke J. F. K., Burgers I., et al. (2005). Physical activity and executive functions in the elderly with mild cognitive impairment. Aging Ment. Health 9 272–280. 10.1080/13607860500089930
    1. Shallice T., Broadbent D. E., Weiskrantz L. (1982). Specific impairments of planning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298 199–209. 10.1098/rstb.1982.0082
    1. Singh-Manoux A., Kivimaki M., Glymour M. M., Elbaz A., Berr C., Ebmeier K. P., et al. (2012). Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ 344:d7622. 10.1136/bmj.d7622
    1. Smith P. J., Blumenthal J. A., Hoffman B. M., Cooper H., Strauman T. A., Welsh-Bohmer K., et al. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 72 239–252. 10.1097/PSY.0b013e3181d14633
    1. Sofi F., Valecchi D., Bacci D., Abbate R., Gensini G. F., Casini A., et al. (2011). Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J. Intern. Med. 269 107–117. 10.1111/j.1365-2796.2010.02281.x
    1. Sorrells S. F., Paredes M. F., Zhang Z., Kang G., Pastor-Alonso O., Biagiotti S., et al. (2021). Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 41 2554–2565. 10.1523/JNEUROSCI.0676-20.2020
    1. Stark S. M., Yassa M. A., Lacy J. W., Stark C. E. L. (2013). A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia 51 2442–2449. 10.1016/j.neuropsychologia.2012.12.014
    1. Stensvold D., Bucher Sandbakk S., Viken H., Zisko N., Reitlo L. S., Nauman J., et al. (2017). Cardiorespiratory Reference Data in Older Adults: The Generation 100 Study. Med. Sci. Sports Exerc. 49 2206–2215. 10.1249/MSS.0000000000001343
    1. Stensvold D., Viken H., Rognmo Ø, Skogvoll E., Steinshamn S., Vatten L. J., et al. (2015). A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the Generation 100 study. BMJ Open 5:e007519. 10.1136/bmjopen-2014-007519
    1. Stensvold D., Viken H., Steinshamn S. L., Dalen H., Støylen A., Loennechen J. P., et al. (2020). Effect of exercise training for five years on all cause mortality in older adults—the Generation 100 study: randomised controlled trial. BMJ 371:m3485. 10.1136/bmj.m3485
    1. Stroth S., Hille K., Spitzer M., Reinhardt R. (2008). Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol. Rehabil. 19 223–243. 10.1080/09602010802091183
    1. Suwabe K., Byun K., Hyodo K., Reagh Z. M., Roberts J. M., Matsushita A., et al. (2018). Rapid stimulation of human dentate gyrus function with acute mild exercise. Proc. Natl. Acad. Sci. U S A. 115 10487–10492. 10.1073/pnas.1805668115
    1. Swain D. P., Franklin B. A. (2006). Comparison of Cardioprotective Benefits of Vigorous Versus Moderate Intensity Aerobic Exercise. Am. J. Cardiol. 97 141–147. 10.1016/j.amjcard.2005.07.130
    1. Tari A. R., Nauman J., Zisko N., Skjellegrind H. K., Bosnes I., Bergh S., et al. (2019). Temporal changes in cardiorespiratory fitness and risk of dementia incidence and mortality: a population-based prospective cohort study. Lancet Public Health 4 e565–e574. 10.1016/S2468-2667(19)30183-5
    1. Terrera G. M., Brayne C., Matthews F., and CC75C Study Collaboration Group. (2010). One size fits all? Why we need more sophisticated analytical methods in the explanation of trajectories of cognition in older age and their potential risk factors. Int. Psychogeriatr. 22 291–299. 10.1017/S1041610209990937
    1. Tranel D., Benton A., Olson K. (1997). A 10−year longitudinal study of cognitive changes in elderly persons. Dev. Neuropsychol. 13 87–96. 10.1080/87565649709540669
    1. Twisk J., Bosman L., Hoekstra T., Rijnhart J. J. M., Welton M., Heijmans M. (2018). Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 10:008. 10.1016/j.conctc.2018.03.008
    1. UN (2017). Population ageing and sustainable development. New York, NY: UN, 67–101. 10.18356/c04b3042-en
    1. van Uffelen J. G. Z., Chin A., Paw M. J. M., Hopman-Rock M., van Mechelen W. (2008). The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 18 486–500. 10.1097/JSM.0b013e3181845f0b
    1. Vivar C., Peterson B. D., van Praag H. (2016). Running rewires the neuronal network of adult-born dentate granule cells. NeuroImage 131 29–41. 10.1016/j.neuroimage.2015.11.031
    1. Voss M. W. (2016). “Chapter 9 - The Chronic Exercise–Cognition Interaction: fMRI Research,” in Exercise-Cognition Interaction, ed. McMorris T. (San Diego: Academic Press; ), 187–209. 10.1016/B978-0-12-800778-5.00009-8
    1. Voss M. W., Heo S., Prakash R. S., Erickson K. I., Alves H., Chaddock L., et al. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum. Brain Mapp. 34 2972–2985. 10.1002/hbm.22119
    1. Wechsler D. (2003). WISC-IV: Administration and scoring manual. Agra: Psychological Corporation.
    1. Whipp B. J. (2010). The peak versus maximum oxygen uptake issue. Milan CPX Int. Inc 2010 1–9.
    1. Williams P., Lord S. R. (1997). Effects of group exercise on cognitive functioning and mood in older women. Aust. N Z. J. Public Health 21 45–52. 10.1111/j.1467-842x.1997.tb01653.x
    1. Woods S. P., Delis D. C., Scott J. C., Kramer J. H., Holdnack J. A. (2006). The California Verbal Learning Test–second edition: test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 21 413–420. 10.1016/j.acn.2006.06.002
    1. Xiong J., Ye M., Wang L., Zheng G. (2020). Effects of Physical Exercise on Executive Function in Cognitively Healthy Older Adults: A Systematic Review and Meta-analysis of Randomized Controlled Trials: Physical exercise for executive function. Int. J. Nurs. Stud. 2020:103810. 10.1016/j.ijnurstu.2020.103810
    1. Yaffe K., Lindquist K., Vittinghoff E., Barnes D., Simonsick E. M., Newman A., et al. (2010). The effect of maintaining cognition on risk of disability and death. J. Am. Geriatr. Soc. 58 889–894. 10.1111/j.1532-5415.2010.02818.x
    1. Young J., Angevaren M., Rusted J., Tabet N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2015:CD005381. 10.1002/14651858.CD005381.pub4
    1. Yu J., Feng Q., Yu J., Zeng Y., Feng L. (2020). Late-Life Cognitive Trajectories and their Associated Lifestyle Factors. J. Alzheimers Dis. JAD 73 1555–1563. 10.3233/JAD-191058
    1. Zigmond A. S., Snaith R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 67 361–370. 10.1111/j.1600-0447.1983.tb09716.x
    1. Zotcheva E., Bergh S., Selbæk G., Krokstad S., Håberg A. K., Strand B. H., et al. (2018). Midlife Physical Activity, Psychological Distress, and Dementia Risk: The HUNT Study. J. Alzheimers Dis. JAD 66 825–833. 10.3233/JAD-180768

Source: PubMed

3
Abonnere