Effects of rs7903146 variation in the Tcf7l2 gene in the lipid metabolism of three different populations

Pablo Perez-Martinez, Ana I Perez-Caballero, Antonio Garcia-Rios, Elena M Yubero-Serrano, Antonio Camargo, Maria J Gomez-Luna, Carmen Marin, Purificacion Gomez-Luna, Aldona Dembinska-Kiec, Fernando Rodriguez-Cantalejo, Francisco J Tinahones, Helen M Roche, Francisco Perez-Jimenez, Jose Lopez-Miranda, Javier Delgado-Lista, Pablo Perez-Martinez, Ana I Perez-Caballero, Antonio Garcia-Rios, Elena M Yubero-Serrano, Antonio Camargo, Maria J Gomez-Luna, Carmen Marin, Purificacion Gomez-Luna, Aldona Dembinska-Kiec, Fernando Rodriguez-Cantalejo, Francisco J Tinahones, Helen M Roche, Francisco Perez-Jimenez, Jose Lopez-Miranda, Javier Delgado-Lista

Abstract

Background: TCF7L2 rs7903146 is an important genetic factor predicting type 2 diabetes (T2DM) which has also been linked to higher cardiovascular risk. To date, there is little information about the additional impact of this single nucleotide polymorphism (SNP) beyond glucose metabolism.

Methodology/principal findings: We studied whether rs7903146 influenced postprandial lipid metabolism in three different populations (healthy young men, metabolic syndrome (MetS) patients and elderly persons). Eighty-eight healthy males were submitted to a single saturated fatty acid-rich test meal. Additionally, 110 middle-aged MetS patients and 20 healthy elderly persons (≥ 65 years) were submitted to three different dietary models followed by test meals. Minor allele homozygotes for rs7903146 showed a worse postprandial lipemia profile in young males, as seen by a lower HDL-cholesterol and Apo A1 concentration during the postprandial lipemia and a trend towards higher triglycerides (TG), than the other genotypes. In healthy elderly persons, carriers of the minor allele showed higher total cholesterol, LDL-cholesterol, Apo B and TG in the fasting state, and a higher postprandial area under the curve for total cholesterol, Apo B, small-triglyceride rich lipoprotein (TRL) cholesterol and small-(TRL) triglycerides. These results were accompanied by differential changes in adipokines. We did not observe any influence of rs7903146 on the postprandium of MetS patients.

Conclusions/significance: Healthy young males and elderly persons who are carriers of the mutant allele for rs7903146 have an impaired postprandial lipid metabolism that may be mediated by an alteration in adipokine regulation, and may be related to the higher cardiovascular risk observed in these persons.

Trial registration: ClinicalTrials.gov NCT00429195.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Plasma concentration of adiponectin (Panel…
Figure 1. Plasma concentration of adiponectin (Panel A), leptin (Panel B) and resistin (Panel C) depending on the rs7903146 genotype.
*p

Figure 2. Area under curve (AUC) of…

Figure 2. Area under curve (AUC) of Total Cholesterol and Apo B (Panel A), and…

Figure 2. Area under curve (AUC) of Total Cholesterol and Apo B (Panel A), and Small-TRL contained Cholesterol, TG and Apo B (Panel B) depending on the rs7903146 in aged cohort (mean
±S.E). *p<0.05 TT vs TC/TT. Values are in (min*mg/dL)/103.
Figure 2. Area under curve (AUC) of…
Figure 2. Area under curve (AUC) of Total Cholesterol and Apo B (Panel A), and Small-TRL contained Cholesterol, TG and Apo B (Panel B) depending on the rs7903146 in aged cohort (mean
±S.E). *p<0.05 TT vs TC/TT. Values are in (min*mg/dL)/103.

References

    1. Fukushima H, Sugiyama S, Honda O, Koide S, Nakamura S, et al. (2004) Prognostic value of remnant-like lipoprotein particle levels in patients with coronary artery disease and type II diabetes mellitus. J Am Coll Cardiol 43: 2219–2224.
    1. Mihas C, Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, et al. (2011) Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Curr Vasc Pharmacol 9: 271–280.
    1. Stalenhoef AF, de Graaf J (2008) Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol 19: 355–361.
    1. Yubero-Serrano EM, Garcia-Rios A, Delgado-Lista J, Delgado-Casado N, Perez-Martinez P, et al. (2011) Postprandial effects of the mediterranean diet on oxidant and antioxidant status in elderly men and women. J Am Geriatr Soc 59: 938–940.
    1. Perez-Martinez P, Ordovas JM, Garcia-Rios A, Delgado-Lista J, Delgado-Casado N, et al. (2011) Consumption of diets with different type of fat influences triacylglycerols-rich lipoproteins particle number and size during the postprandial state. Nutr Metab Cardiovasc Dis 21: 39–45.
    1. Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J (2011) Nutrigenetics of the postprandial lipoprotein metabolism: evidences from human intervention studies. Curr Vasc Pharmacol 9: 287–291.
    1. Delgado-Lista J, Garcia-Rios A, Perez-Martinez P, Solivera J, Yubero-Serrano EM, et al. (2011) Interleukin 1B variant -1473G/C (rs1143623) influences triglyceride and interleukin 6 metabolism. J Clin Endocrinol Metab 96: E816–820.
    1. Perez-Martinez P, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J (2010) Update on genetics of postprandial lipemia. Atheroscler Suppl 11: 39–43.
    1. Delgado-Lista J, Perez-Martinez P, Perez-Jimenez F, Garcia-Rios A, Fuentes F, et al. (2010) ABCA1 gene variants regulate postprandial lipid metabolism in healthy men. Arterioscler Thromb Vasc Biol 30: 1051–1057.
    1. Delgado-Lista J, Perez-Jimenez F, Ruano J, Perez-Martinez P, Fuentes F, et al. (2010) Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men. J Lipid Res 51: 63–73.
    1. Taskinen MR (2002) Diabetic dyslipidemia. Atheroscler Suppl 3: 47–51.
    1. National Cholesterol Education Program. Third report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Bethesda, MD: National Heart, Lung, and Blood Institute; 2002.
    1. Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51: 1100–1110.
    1. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, et al. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38: 320–323.
    1. Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, et al. (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58: 493–498.
    1. Schinner S (2009) Wnt-signalling and the metabolic syndrome. Horm Metab Res 41: 159–163.
    1. Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Phillips CM, Williams CM, et al.. (2010) Pleiotropic effects of TCF7L2 gene variants and its modulation in the metabolic syndrome: From the LIPGENE study. Atherosclerosis.
    1. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, et al. (2009) Polyunsaturated fatty acids modulate the effect of TCF7L2 gene variants on postprandial lipemia. J Nutr 139: 439–446.
    1. Delgado-Lista J, Perez-Jimenez F, Tanaka T, Perez-Martinez P, Jimenez-Gomez Y, et al. (2007) An apolipoprotein A-II polymorphism (-265T/C, rs5082) regulates postprandial response to a saturated fat overload in healthy men. J Nutr 137: 2024–2028.
    1. Perez-Martinez P, Yiannakouris N, Lopez-Miranda J, Arnett D, Tsai M, et al. (2008) Postprandial triacylglycerol metabolism is modified by the presence of genetic variation at the perilipin (PLIN) locus in 2 white populations. Am J Clin Nutr 87: 744–752.
    1. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 24: e13–18.
    1. Shaw DI, Tierney AC, McCarthy S, Upritchard J, Vermunt S, et al. (2009) LIPGENE food-exchange model for alteration of dietary fat quantity and quality in free-living participants from eight European countries. Br J Nutr 101: 750–759.
    1. Gutierrez-Mariscal FM, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Camargo A, et al.. (2011) Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Age (Dordr).
    1. Hartwich J, Leszczynska-Golabek I, Kiec-Wilk B, Siedlecka D, Perez-Martinez P, et al. (2010) Lipoprotein profile, plasma ischemia modified albumin and LDL density change in the course of postprandial lipemia. Insights from the LIPGENE study. Scand J Clin Lab Invest 70: 201–208.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412–419.
    1. Riepponen P, Marniemi J, Rautaoja T (1987) Immunoturbidimetric determination of apolipoproteins A-1 and B in serum. Scand J Clin Lab Invest 47: 739–744.
    1. Warnick GR, Benderson J, Albers JJ (1982) Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem 28: 1379–1388.
    1. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499–502.
    1. Pang DX, Smith AJ, Humphries SE (2012) Functional analysis of TCF7L2 genetic variants associated with type 2 diabetes. Nutr Metab Cardiovasc Dis.
    1. Pilgaard K, Jensen CB, Schou JH, Lyssenko V, Wegner L, et al. (2009) The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 52: 1298–1307.
    1. McCaffery JM, Jablonski KA, Franks PW, Dagogo-Jack S, Wing RR, et al. (2011) TCF7L2 polymorphism, weight loss and proinsulin:insulin ratio in the diabetes prevention program. PLoS One 6: e21518.
    1. Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, et al. (2006) TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 355: 241–250.
    1. Florez JC (2007) The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care 10: 391–396.
    1. Roche HM, Phillips C, Gibney MJ (2005) The metabolic syndrome: the crossroads of diet and genetics. Proc Nutr Soc 64: 371–377.
    1. da Silva Xavier G, Loder MK, McDonald A, Tarasov AI, Carzaniga R, et al. (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58: 894–905.
    1. Tang W, Dodge M, Gundapaneni D, Michnoff C, Roth M, et al. (2008) A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc Natl Acad Sci U S A 105: 9697–9702.
    1. Sousa AG, Marquezine GF, Lemos PA, Martinez E, Lopes N, et al. (2009) TCF7L2 polymorphism rs7903146 is associated with coronary artery disease severity and mortality. PLoS One 4: e7697.
    1. McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, et al. (2002) Resistin, central obesity, and type 2 diabetes. Lancet 359: 46–47.
    1. Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, et al. (2002) Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 51: 2951–2958.
    1. Nedvidkova J, Smitka K, Kopsky V, Hainer V (2005) Adiponectin, an adipocyte-derived protein. Physiol Res 54: 133–140.
    1. Ruano J, Lopez-Miranda J, de la Torre R, Delgado-Lista J, Fernandez J, et al. (2007) Intake of phenol-rich virgin olive oil improves the postprandial prothrombotic profile in hypercholesterolemic patients. Am J Clin Nutr 86: 341–346.
    1. Williams KW, Scott MM, Elmquist JK (2009) From observation to experimentation: leptin action in the mediobasal hypothalamus. Am J Clin Nutr 89: 985S–990S.
    1. Smushkin G, Sathananthan M, Sathananthan A, Dalla Man C, Micheletto F, et al. (2012) Diabetes-Associated Common Genetic Variation and Its Association With GLP-1 Concentrations and Response to Exogenous GLP-1. Diabetes 61: 1082–1089.

Source: PubMed

3
Abonnere