Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy

Ines Klein, Helmar C Lehmann, Ines Klein, Helmar C Lehmann

Abstract

Peripheral neuropathy is one of the most common side effects of chemotherapy, affecting up to 60% of all cancer patients receiving chemotherapy. Moreover, paclitaxel induces neuropathy in up to 97% of all gynecological and urological cancer patients. In cancer cells, paclitaxel induces cell death via microtubule stabilization interrupting cell mitosis. However, paclitaxel also affects cells of the central and peripheral nervous system. The main symptoms are pain and numbness in hands and feet due to paclitaxel accumulation in the dorsal root ganglia. This review describes in detail the pathomechanisms of paclitaxel in the peripheral nervous system. Symptoms occur due to a length-dependent axonal sensory neuropathy, where axons are symmetrically damaged and die back. Due to microtubule stabilization, axonal transport is disrupted, leading to ATP undersupply and oxidative stress. Moreover, mitochondria morphology is altered during paclitaxel treatment. A key player in pain sensation and axonal damage is the paclitaxel-induced inflammation in the spinal cord as well as the dorsal root ganglia. An increased expression of chemokines and cytokines such as IL-1β, IL-8, and TNF-α, but also CXCR4, RAGE, CXCL1, CXCL12, CX3CL1, and C3 promote glial activation and accumulation, and pain sensation. These findings are further elucidated in this review.

Keywords: CIPN; neuropathy; neurotoxicity; paclitaxel; paclitaxel-induced peripheral neuropathy; taxol.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Paclitaxel enhances microtubule stability. Under physiological conditions, guanosine triphosphate (GTP)-bound tubulin dimers get incorporated at the growing end of the microtubules. This structure is supposed to form a stabilizing cap of GTP-bound tubulin. The conformation change in tubulin dimers is due to the GTP getting hydrolyzed into guanosine diphosphate (GDP), and this destabilizes the microtubule lattice. Through the loss of the GTP-tubulin cap, the microtubules are getting depolymerized. This process of microtubule depolymerization gets prevented by paclitaxel binding to β-tubulin (pathological condition). Created with BioRender.com (accessed on 20 September 2021).
Figure 2
Figure 2
Pathomechanisms of paclitaxel-induced peripheral neuropathy in the peripheral nervous system. ATP—adenosine triphosphate, C3—complement component 3, CD11b—cluster of differentiation 11B, CD163—cluster of differentiation 163, CX3CL1—C-X3-C motif ligand 1, CXCL1—C-X-C motif chemokine ligand 1, CXCL12—C-X-C motif chemokine ligand 12, CXCR4—as C-X-C chemokine receptor type 4, GSH—glutathione, IL—interleukin, JNK—c-Jun N-terminal kinase, MCP-1—monocyte chemoattractant protein 1, MMP—matrix-metalloproteinase, RAGE—receptor for advanced glycation end products, ROS—reactive oxygen species, SGC—satellite glial cell, TNF-α—tumor necrosis factor; Created with BioRender.com (accessed on 20 September 2021).
Figure 3
Figure 3
Pathomechanisms of paclitaxel-induced peripheral neuropathy in the spinal cord. CB2—cannabinoid receptor type, CCL2—C-C motif ligand 2, CX3CL1—C-X3-C motif ligand 1, GFAP—glial fibrillary acidic protein, Iba1—ionized calcium-binding adapter molecule 1, IL—interleukin, NF-κB—nuclear factor kappa B, TNF-α—tumor necrosis factor; Created with BioRender.com (accessed on 20 September 2021).

References

    1. Mielke S., Sparreboom A., Mross K. Peripheral neuropathy: A persisting challenge in paclitaxel-based regimes. Eur. J. Cancer. 2006;42:24–30. doi: 10.1016/j.ejca.2005.06.030.
    1. Visovsky C. Chemotherapy-Induced Peripheral Neuropathy. Cancer Investig. 2003;21:439–451. doi: 10.1081/CNV-120018236.
    1. Lee J.J., Swain S. Peripheral Neuropathy Induced by Microtubule-Stabilizing Agents. J. Clin. Oncol. 2006;24:1633–1642. doi: 10.1200/JCO.2005.04.0543.
    1. Arrieta O., la Rosa C.H.G.-D., Aréchaga-Ocampo E., Villanueva-Rodríguez G., Cerón-Lizárraga T.L., Martínez-Barrera L., Vázquez-Manríquez M.E., Ríos-Trejo M., Álvarez-Avitia M., Hernández-Pedro N., et al. Randomized Phase II Trial of All-Trans-Retinoic Acid with Chemotherapy Based on Paclitaxel and Cisplatin as First-Line Treatment in Patients with Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2010;28:3463–3471. doi: 10.1200/JCO.2009.26.6452.
    1. Corso A., Mangiacavalli S., Varettoni M., Pascutto C., Zappasodi P., Lazzarino M. Bortezomib-induced peripheral neuropathy in multiple myeloma: A comparison between previously treated and untreated patients. Leuk. Res. 2010;34:471–474. doi: 10.1016/j.leukres.2009.07.022.
    1. Kanbayashi Y., Hosokawa T., Okamoto K., Konishi H., Otsuji E., Yoshikawa T., Takagi T., Taniwaki M. Statistical identification of predictors for peripheral neuropathy associated with administration of bortezomib, taxanes, oxaliplatin or vincristine using ordered logistic regression analysis. Anti-Cancer Drugs. 2010;21:877–881. doi: 10.1097/CAD.0b013e32833db89d.
    1. Cavaletti G., Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Curr. Opin. Neurol. 2015;28:500–507. doi: 10.1097/WCO.0000000000000234.
    1. Seretny M., Currie G.L., Sena E.S., Ramnarine S., Grant R., Macleod M.R., Colvin L., Fallon M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain. 2014;155:2461–2470. doi: 10.1016/j.pain.2014.09.020.
    1. Gutiérrez-Gutiérrez G., Sereno M., Miralles A., Casado-Sáenz E., Gutiérrez-Rivas E. Chemotherapy-induced peripheral neuropathy: Clinical features, diagnosis, prevention and treatment strategies. Clin. Transl. Oncol. 2010;12:81–91. doi: 10.1007/S12094-010-0474-z.
    1. Alberti P., Lehmann H.C. Chemotherapy induced peripheral neurotoxicity: Six essential articles for effective future research. Exp. Neurol. 2021;337:113555. doi: 10.1016/j.expneurol.2020.113555.
    1. Cavaletti G., Cavalletti E., Oggioni N., Sottani C., Minoia C., D’Incalci M., Zucchetti M., Marmiroli P., Tredici G. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. NeuroToxicology. 2000;21:389–393. doi: 10.1046/j.1529-8027.2001.01008-5.x.
    1. Picard M., Castells M.C. Re-visiting Hypersensitivity Reactions to Taxanes: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2015;49:177–191. doi: 10.1007/s12016-014-8416-0.
    1. Kröger N., Achterrath W., Hegewisch-Becker S., Mross K., Zander A. Current options in treatment of anthracycline-resistant breast cancer. Cancer Treat. Rev. 1999;25:279–291. doi: 10.1053/ctrv.1999.0137.
    1. Nathan F.E., Berd D., Sato T., Mastrangelo M.J. Paclitaxel and tamoxifen. An active regimen for patients with metastatic melanoma. Cancer. 2000;88:79–87. doi: 10.1002/(SICI)1097-0142(20000101)88:1<79::AID-CNCR12>;2-L.
    1. Belani C.P. Paclitaxel and docetaxel combinations in non-small cell lung cancer. Chest. 2000;117:144S–151S. doi: 10.1378/chest.117.4_suppl_1.144S.
    1. Bunn P.A., Jr., Kelly K. New combinations in the treatment of lung cancer: A time for optimism. Chest. 2000;117:138S–143S. doi: 10.1378/chest.117.4_suppl_1.138S.
    1. Jordan M.A., Toso R.J., Thrower D., Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA. 1993;90:9552–9556. doi: 10.1073/pnas.90.20.9552.
    1. Dumontet C., Jordan M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010;9:790–803. doi: 10.1038/nrd3253.
    1. Schiff P., Horwitz S.B. Taxol assembles tubulin in the absence of exogenous guanosine 5’-triphosphate or microtubule-associated proteins. Biochemistry. 1981;20:3247–3252. doi: 10.1021/bi00514a041.
    1. Gornstein E., Schwarz T.L. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology. 2014;76:175–183. doi: 10.1016/j.neuropharm.2013.08.016.
    1. Nehate C., Jain S., Saneja A., Khare V., Alam N., Dubey R., Gupta P. Paclitaxel Formulations: Challenges and Novel Delivery Options. Curr. Drug Deliv. 2014;11:666–686. doi: 10.2174/1567201811666140609154949.
    1. Gelderblom H., Verweij J., Nooter K., Sparreboom A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer. 2001;37:1590–1598. doi: 10.1016/S0959-8049(01)00171-X.
    1. Klein I., Wiesen M.H.J., Albert V., Bobylev I., Joshi A.R., Müller C., Lehmann H.C. Impact of drug formulations on kinetics and toxicity in a preclinical model of paclitaxel-induced neuropathy. J. Peripher. Nerv. Syst. 2021;26:216–226. doi: 10.1111/jns.12440.
    1. Chandrasekaran G., Tatrai P., Gergely F. Hitting the brakes: Targeting microtubule motors in cancer. Br. J. Cancer. 2015;113:693–698. doi: 10.1038/bjc.2015.264.
    1. Burbank K.S., Mitchison T.J. Microtubule dynamic instability. Curr. Biol. 2006;16:R516–R517. doi: 10.1016/j.cub.2006.06.044.
    1. Mitchison T.J., Kirschner M.W. Dynamic instability of microtubule growth. Nature. 1984;312:237–242. doi: 10.1038/312237a0.
    1. Nogales E., Wang H.-W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 2006;16:221–229. doi: 10.1016/j.sbi.2006.03.005.
    1. Schiff P., Fant J., Horwitz S.B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–667. doi: 10.1038/277665a0.
    1. Nogales E., Wolf S.G., Khan I.A., Ludueña R.F., Downing K.H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature. 1995;375:424–427. doi: 10.1038/375424a0.
    1. Risinger A.L., Riffle S.M., Lopus M., Jordan M.A., Wilson L., Mooberry S.L. The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation. Mol. Cancer. 2014;13:41. doi: 10.1186/1476-4598-13-41.
    1. Prota A.E., Bargsten K., Zurwerra D., Field J.J., Díaz J.F., Altmann K.-H., Steinmetz M.O. Molecular Mechanism of Action of Microtubule-Stabilizing Anticancer Agents. Science. 2013;339:587–590. doi: 10.1126/science.1230582.
    1. Bhalla K.N. Microtubule-targeted anticancer agents and apoptosis. Oncogene. 2003;22:9075–9086. doi: 10.1038/sj.onc.1207233.
    1. McGrogan B.T., Gilmartin B., Carney D.N., McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. et Biophys. Acta (BBA) Bioenerg. 2008;1785:96–132. doi: 10.1016/j.bbcan.2007.10.004.
    1. Staff N.P., Grisold A., Grisold W., Windebank A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017;81:772–781. doi: 10.1002/ana.24951.
    1. Carlson K.-S., Ocean A.J. Peripheral Neuropathy with Microtubule-Targeting Agents: Occurrence and Management Approach. Clin. Breast Cancer. 2011;11:73–81. doi: 10.1016/j.clbc.2011.03.006.
    1. Jaggi A.S., Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology. 2012;291:1–9. doi: 10.1016/j.tox.2011.10.019.
    1. Argyriou A.A., Koltzenburg M., Polychronopoulos P., Papapetropoulos S., Kalofonos H. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit. Rev. Oncol. 2008;66:218–228. doi: 10.1016/j.critrevonc.2008.01.008.
    1. Dougherty P.M., Cata J.P., Cordella J.V., Burton A., Weng H.-R. Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain. 2004;109:132–142. doi: 10.1016/j.pain.2004.01.021.
    1. Scripture C.D., Figg W.D., Sparreboom A. Peripheral Neuropathy Induced by Paclitaxel: Recent Insights and Future Perspectives. Curr. Neuropharmacol. 2006;4:165–172. doi: 10.2174/157015906776359568.
    1. Tanabe Y., Hashimoto K., Shimizu C., Hirakawa A., Harano K., Yunokawa M., Yonemori K., Katsumata N., Tamura K., Ando M., et al. Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int. J. Clin. Oncol. 2013;18:132–138. doi: 10.1007/s10147-011-0352-x.
    1. Woo D.D.L., Miao S.Y.P., Pelayo J.C., Woolf A.S. Taxol inhibits progression of congenital polycystic kidney disease. Nature. 1994;368:750–753. doi: 10.1038/368750a0.
    1. Windebank A.J., Grisold W. Chemotherapy-induced neuropathy. J. Peripher. Nerv. Syst. 2008;13:27–46. doi: 10.1111/j.1529-8027.2008.00156.x.
    1. Boyette-Davis J., Xin W., Zhang H., Dougherty P.M. Intraepidermal nerve fiber loss corresponds to the development of Taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain. 2011;152:308–313. doi: 10.1016/j.pain.2010.10.030.
    1. Ko M.-H., Hu M.-E., Hsieh Y.-L., Lan C.-T., Tseng T.-J. Peptidergic intraepidermal nerve fibers in the skin contribute to the neuropathic pain in paclitaxel-induced peripheral neuropathy. Neuropeptides. 2014;48:109–117. doi: 10.1016/j.npep.2014.02.001.
    1. Gerdts J., Brace E.J., Sasaki Y., DiAntonio A., Milbrandt J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science. 2015;348:453–457. doi: 10.1126/science.1258366.
    1. Hughes R.O., Bosanac T., Mao X., Engber T.M., DiAntonio A., Milbrandt J., Devraj R., Krauss R. Small Molecule SARM1 Inhibitors Recapitulate the SARM1−/− Phenotype and Allow Recovery of a Metastable Pool of Axons Fated to Degenerate. Cell Rep. 2021;34:108588. doi: 10.1016/j.celrep.2020.108588.
    1. Bosanac T., Hughes R.O., Engber T., Devraj R., Brearley A., Danker K., Young K., Kopatz J., Hermann M., Berthemy A., et al. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain. 2021 doi: 10.1093/brain/awab184.
    1. Lehmann H.C., Staff N.P., Hoke A. Modeling chemotherapy induced peripheral neuropathy (CIPN) in vitro: Prospects and limitations. Exp. Neurol. 2019;326:113140. doi: 10.1016/j.expneurol.2019.113140.
    1. Bruna J., Alberti P., Calls-Cobos A., Caillaud M., Damaj M.I., Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp. Neurol. 2019;325:113154. doi: 10.1016/j.expneurol.2019.113154.
    1. Flatters S.J.L., Bennett G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain. 2006;122:245–257. doi: 10.1016/j.pain.2006.01.037.
    1. Scuteri A., Nicolini G., Miloso M., Bossi M., Cavaletti G., Windebank A.J., Tredici G. Paclitaxel toxicity in post-mitotic dorsal root ganglion (DRG) cells. Anticancer Res. 2006;26:1065–1070.
    1. Benbow S.J., Wozniak K.M., Kulesh B., Savage A., Slusher B.S., Littlefield B.A., Jordan M.A., Wilson L., Feinstein S.C. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy. Neurotox. Res. 2017;32:151–162. doi: 10.1007/s12640-017-9729-6.
    1. Tasnim A., Rammelkamp Z., Slusher A.B., Wozniak K., Slusher B.S., Farah M.H. Paclitaxel causes degeneration of both central and peripheral axon branches of dorsal root ganglia in mice. BMC Neurosci. 2016;17:47. doi: 10.1186/s12868-016-0285-4.
    1. Bobylev I., Joshi A., Barham M., Ritter C., Neiss W.F., Höke A., Lehmann H.C. Paclitaxel inhibits mRNA transport in axons. Neurobiol. Dis. 2015;82:321–331. doi: 10.1016/j.nbd.2015.07.006.
    1. Lin M.T., Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292.
    1. Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Physiol. 2007;292:C670–C686. doi: 10.1152/ajpcell.00213.2006.
    1. Fukuda Y., Li Y., Segal R.A. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front. Neurosci. 2017;11:481. doi: 10.3389/fnins.2017.00481.
    1. Krols M., Van Isterdael G., Asselbergh B., Kremer A., Lippens S., Timmerman V., Janssens S. Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol. 2016;131:505–523. doi: 10.1007/s00401-015-1528-7.
    1. Pease-Raissi S.E., Pazyra-Murphy M.F., Li Y., Wachter F., Fukuda Y., Fenstermacher S.J., Barclay L.A., Bird G.H., Walensky L.D., Segal R.A. Paclitaxel Reduces Axonal Bclw to Initiate IP3R1-Dependent Axon Degeneration. Neuron. 2017;96:373–386.e6. doi: 10.1016/j.neuron.2017.09.034.
    1. Xiao W.H., Bennett G.J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain. 2012;153:704–709. doi: 10.1016/j.pain.2011.12.011.
    1. Bernardi P., Krauskopf A., Basso E., Petronilli V., Blalchy-Dyson E., Di Lisa F., Forte M.A. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273:2077–2099. doi: 10.1111/j.1742-4658.2006.05213.x.
    1. Duggett N., Griffiths L., Flatters S.J.L. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain. 2017;158:1499–1508. doi: 10.1097/j.pain.0000000000000939.
    1. Flatters S.J., Xiao W.-H., Bennett G.J. Acetyl-l-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy. Neurosci. Lett. 2006;397:219–223. doi: 10.1016/j.neulet.2005.12.013.
    1. Shim H.S., Bae C., Wang J., Lee K.-H., Hankerd K.M., Kim H.K., Chung J.M., La J.-H. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol. Pain. 2019;15:1744806919840098. doi: 10.1177/1744806919840098.
    1. Jin H.W., Flatters S.J.L., Xiao W.H., Mulhern H.L., Bennett G.J. Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-l-carnitine: Effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp. Neurol. 2008;210:229–237. doi: 10.1016/j.expneurol.2007.11.001.
    1. Janes K., Doyle T., Bryant L., Esposito E., Cuzzocrea S., Ryerse J., Bennett G.J., Salvemini D. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase. Pain. 2013;154:2432–2440. doi: 10.1016/j.pain.2013.07.032.
    1. Yang Y., Karakhanova S., Hartwig W., D’Haese J.G., Philippov P.P., Werner J., Bazhin A.V. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J. Cell. Physiol. 2016;231:2570–2581. doi: 10.1002/jcp.25349.
    1. Duggett N.A., Griffiths L., McKenna O.E., de Santis V., Yongsanguanchai N., Mokori E.B., Flatters S.J. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience. 2016;333:13–26. doi: 10.1016/j.neuroscience.2016.06.050.
    1. Fidanboylu M., Griffiths L., Flatters S.J.L. Global Inhibition of Reactive Oxygen Species (ROS) Inhibits Paclitaxel-Induced Painful Peripheral Neuropathy. PLoS ONE. 2011;6:e25212. doi: 10.1371/journal.pone.0025212.
    1. Meshkini A., Yazdanparast R. Involvement of oxidative stress in taxol-induced apoptosis in chronic myelogenous leukemia K562 cells. Exp. Toxicol. Pathol. 2010;64:357–365. doi: 10.1016/j.etp.2010.09.010.
    1. Cirrincione A., Pellegrini A.D., Dominy J.R., Benjamin M.E., Utkina-Sosunova I., Lotti F., Jergova S., Sagen J., Rieger S. Paclitaxel-induced peripheral neuropathy is caused by epidermal ROS and mitochondrial damage through conserved MMP-13 activation. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-60990-8.
    1. Lisse T.S., Middleton L.J., Pellegrini A.D., Martin P.B., Spaulding E.L., Lopes O., Brochu E.A., Carter E.V., Waldron A., Rieger S. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc. Natl. Acad. Sci. USA. 2016;113:E2189–E2198. doi: 10.1073/pnas.1525096113.
    1. Zhang H.J., Zhao W., Venkataraman S., Robbins M.E.C., Buettner G., Kregel K.C., Oberley L.W. Activation of Matrix Metalloproteinase-2 by Overexpression of Manganese Superoxide Dismutase in Human Breast Cancer MCF-7 Cells Involves Reactive Oxygen Species. J. Biol. Chem. 2002;277:20919–20926. doi: 10.1074/jbc.M109801200.
    1. Hsieh C.-L., Liu C.-M., Chen H.-A., Yang S.-T., Shigemura K., Kitagawa K., Yamamichi F., Fujisawa M., Liu Y.-R., Lee W.-H., et al. Reactive oxygen species–mediated switching expression of MMP-3 in stromal fibroblasts and cancer cells during prostate cancer progression. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-08835-9.
    1. Zhang H., Li Y., de Carvalho-Barbosa M., Kavelaars A., Heijnen C.J., Albrecht P.J., Dougherty P.M. Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. J. Pain. 2016;17:775–786. doi: 10.1016/j.jpain.2016.02.011.
    1. Ji R.-R., Berta T., Nedergaard M. Glia and pain: Is chronic pain a gliopathy? Pain. 2013;154:S10–S28. doi: 10.1016/j.pain.2013.06.022.
    1. Al-Mazidi S., Alotaibi M., Nedjadi T., Chaudhary A., Alzoghaibi M., Djouhri L. Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy-induced neuropathy. Eur. J. Pain. 2017;22:810–821. doi: 10.1002/ejp.1169.
    1. Laura B., Elisabetta B., Adelchi R.P., Roberto R., Loredana C., Andrea A., Michele D., Castelli V., Antonio G., Marcello A., et al. CXCR1/2 pathways in paclitaxel-induced neuropathic pain. Oncotarget. 2017;8:23188–23201. doi: 10.18632/oncotarget.15533.
    1. Sekiguchi F., Domoto R., Nakashima K., Yamasoba D., Yamanishi H., Tsubota M., Wake H., Nishibori M., Kawabata A. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology. 2018;141:201–213. doi: 10.1016/j.neuropharm.2018.08.040.
    1. Li D., Huang Z.-Z., Ling Y.-Z., Wei J.-Y., Cui Y., Zhang X.-Z., Zhu H.-Q., Xin W.-J. Up-regulation of CX3CL1 via Nuclear Factor-κB–dependent Histone Acetylation Is Involved in Paclitaxel-induced Peripheral Neuropathy. Anesthesiology. 2015;122:1142–1151. doi: 10.1097/ALN.0000000000000560.
    1. Manjavachi M.N., Passos G.F., Trevisan G., Araújo S.B., Pontes J.P., Fernandes E.S., Costa R., Calixto J.B. Spinal blockage of CXCL1 and its receptor CXCR2 inhibits paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology. 2019;151:136–143. doi: 10.1016/j.neuropharm.2019.04.014.
    1. Xu J., Zhang L., Xie M., Li Y., Huang P., Saunders T.L., Fox D.A., Rosenquist R., Lin F. Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy. J. Immunol. 2018;200:4094–4101. doi: 10.4049/jimmunol.1701716.
    1. Montague K., Malcangio M. The Therapeutic Potential of Monocyte/Macrophage Manipulation in the Treatment of Chemotherapy-Induced Painful Neuropathy. Front. Mol. Neurosci. 2017;10:397. doi: 10.3389/fnmol.2017.00397.
    1. Meng J., Zhang Q., Yang C., Xiao L., Xue Z., Zhu J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front. Pharmacol. 2019;10:365. doi: 10.3389/fphar.2019.00365.
    1. Pevida M., Lastra A., Hidalgo A., Baamonde A., Menéndez L. Spinal CCL2 and microglial activation are involved in paclitaxel-evoked cold hyperalgesia. Brain Res. Bull. 2013;95:21–27. doi: 10.1016/j.brainresbull.2013.03.005.
    1. Wu J., Hocevar M., Bie B., Foss J.F., Naguib M. Cannabinoid Type 2 Receptor System Modulates Paclitaxel-Induced Microglial Dysregulation and Central Sensitization in Rats. J. Pain. 2019;20:501–514. doi: 10.1016/j.jpain.2018.10.007.
    1. Ha J.-W., You M.-J., Park H.-S., Kim J.W., Kwon M.-S. Differential effect of LPS and paclitaxel on microglial functional phenotypes and circulating cytokines: The possible role of CX3CR1 and IL-4/10 in blocking persistent inflammation. Arch. Pharmacal Res. 2019;42:359–368. doi: 10.1007/s12272-019-01137-w.
    1. Burgos E., Gomez-Nicola D., Pascual D., Martín M.I., Nieto-Sampedro M., Goicoechea C. Cannabinoid agonist WIN 55,212-2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal glial cells. Eur. J. Pharmacol. 2012;682:62–72. doi: 10.1016/j.ejphar.2012.02.008.
    1. Deng L., Guindon J., Cornett B.L., Makriyannis A., Mackie K., Hohmann A.G. Chronic Cannabinoid Receptor 2 Activation Reverses Paclitaxel Neuropathy Without Tolerance or Cannabinoid Receptor 1–Dependent Withdrawal. Biol. Psychiatry. 2015;77:475–487. doi: 10.1016/j.biopsych.2014.04.009.
    1. Segat G.C., Manjavachi M.N., Matias D.O., Passos G.F., Freitas C.S., da Costa R., Calixto J.B. Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology. 2017;125:207–219. doi: 10.1016/j.neuropharm.2017.07.015.
    1. Peters C., Jimenez-Andrade J.M., Jonas B.M., Sevcik M.A., Koewler N.J., Ghilardi J.R., Wong G.Y., Mantyh P.W. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol. 2007;203:42–54. doi: 10.1016/j.expneurol.2006.07.022.
    1. Nishida K., Kuchiiwa S., Oiso S., Futagawa T., Masuda S., Takeda Y., Yamada K. Up-regulation of matrix metalloproteinase-3 in the dorsal root ganglion of rats with paclitaxel-induced neuropathy. Cancer Sci. 2008;99:1618–1625. doi: 10.1111/j.1349-7006.2008.00877.x.
    1. Villeneuve D.J., Hembruff S.L., Veitch Z., Cecchetto M., Dew W.A., Parissenti A.M. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res. Treat. 2005;96:17–39. doi: 10.1007/s10549-005-9026-6.
    1. Nair V., Arjuman A., Dorababu P., Gopalakrishna H.N., Rao U.C., Mohan L. Effect of NR-ANX-C (a polyherbal formulation) on haloperidol induced catalepsy in albino mice. Indian J. Med. Res. 2007;126:480–484. doi: 10.1186/1749-7221-5-3.
    1. Muthuraman A., Singh N. Attenuating effect of hydroalcoholic extract of Acorus calamus in vincristine-induced painful neuropathy in rats. J. Nat. Med. 2011;65:480–487. doi: 10.1007/s11418-011-0525-y.
    1. Zhang H., Boyette-Davis J.A., Kosturakis A.K., Li Y., Yoon S.-Y., Walters E., Dougherty P. Induction of Monocyte Chemoattractant Protein-1 (MCP-1) and Its Receptor CCR2 in Primary Sensory Neurons Contributes to Paclitaxel-Induced Peripheral Neuropathy. J. Pain. 2013;14:1031–1044. doi: 10.1016/j.jpain.2013.03.012.
    1. Byrd-Leifer C.A., Block E.F., Takeda K., Akira S., Ding A. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur. J. Immunol. 2001;31:2448–2457. doi: 10.1002/1521-4141(200108)31:8<2448::AID-IMMU2448>;2-N.
    1. Li Y., Zhang H., Zhang H., Kosturakis A.K., Jawad A.B., Dougherty P.M. Toll-Like Receptor 4 Signaling Contributes to Paclitaxel-Induced Peripheral Neuropathy. J. Pain. 2014;15:712–725. doi: 10.1016/j.jpain.2014.04.001.
    1. Warwick R., Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain. 2013;17:571–580. doi: 10.1002/j.1532-2149.2012.00219.x.
    1. Boehmerle W., Huehnchen P., Lee S.L.L., Harms C., Endres M. TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. Exp. Neurol. 2018;306:64–75. doi: 10.1016/j.expneurol.2018.04.014.
    1. Materazzi S., Fusi C., Benemei S., Pedretti P., Patacchini R., Nilius B., Prenen J., Creminon C., Geppetti P., Nassini R. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflügers Arch. -Eur. J. Physiol. 2012;463:561–569. doi: 10.1007/s00424-011-1071-x.
    1. Wu Z., Wang S., Wu I., Mata M., Fink D. Activation of TLR-4 to produce tumour necrosis factor-α in neuropathic pain caused by paclitaxel. Eur. J. Pain. 2014;19:889–898. doi: 10.1002/ejp.613.
    1. Alessandri-Haber N., Dina O.A., Yeh J.J., Parada C.A., Reichling D.B., Levine J.D., Baden T., Hedwig B. Transient Receptor Potential Vanilloid 4 Is Essential in Chemotherapy-Induced Neuropathic Pain in the Rat. J. Neurosci. 2004;24:4444–4452. doi: 10.1523/JNEUROSCI.0242-04.2004.
    1. Leblanc A.F., Sprowl J., Alberti P., Chiorazzi A., Arnold W.D., Gibson A.A., Hong K.W., Pioso M.S., Chen M., Huang K.M., et al. OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J. Clin. Investig. 2018;128:816–825. doi: 10.1172/JCI96160.
    1. Svoboda M., Wlcek K., Taferner B., Hering S., Stieger B., Tong D., Zeillinger R., Thalhammer T., Jäger W. Expression of organic anion-transporting polypeptides 1B1 and 1B3 in ovarian cancer cells: Relevance for paclitaxel transport. Biomed. Pharmacother. 2011;65:417–426. doi: 10.1016/j.biopha.2011.04.031.
    1. Abe T., Unno M., Onogawa T., Tokui T., Kondo T.N., Nakagomi R., Adachi H., Fujiwara K., Okabe M., Suzuki T., et al. LST-2, A human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001;120:1689–1699. doi: 10.1053/gast.2001.24804.
    1. Wright J.L., Kwon E.M., Ostrander E., Montgomery R.B., Lin D.W., Vessella R., Stanford J.L., Mostaghel E.A. Expression of SLCO Transport Genes in Castration-Resistant Prostate Cancer and Impact of Genetic Variation in SLCO1B3 and SLCO2B1 on Prostate Cancer Outcomes. Cancer Epidemiol. Biomark. Prev. 2011;20:619–627. doi: 10.1158/1055-9965.EPI-10-1023.
    1. Marada V.V., Flörl S., Kühne A., Müller J., Burckhardt G., Hagos Y. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs. Pharmacol. Res. 2015;91:78–87. doi: 10.1016/j.phrs.2014.11.002.
    1. Cropp C.D., Komori T., Shima J.E., Urban T.J., Yee S.W., More S.S., Giacomini K.M. Organic Anion Transporter 2 (SLC22A7) Is a Facilitative Transporter of cGMP. Mol. Pharmacol. 2008;73:1151–1158. doi: 10.1124/mol.107.043117.
    1. Hotchkiss A.G., Berrigan L., Pelis R.M. Organic anion transporter 2 transcript variant 1 shows broad ligand selectivity when expressed in multiple cell lines. Front. Pharmacol. 2015;6:216. doi: 10.3389/fphar.2015.00216.

Source: PubMed

3
Abonnere